YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Storm-Track Response to SST Fronts in the Northwestern Pacific Region in an AGCM

    Source: Journal of Climate:;2016:;volume( 030 ):;issue: 003::page 1081
    Author:
    Kuwano-Yoshida, Akira
    ,
    Minobe, Shoshiro
    DOI: 10.1175/JCLI-D-16-0331.1
    Publisher: American Meteorological Society
    Abstract: he storm-track response to sea surface temperature (SST) fronts in the northwestern Pacific region is investigated using an atmospheric general circulation model with a 50-km horizontal resolution. The following two experiments are conducted: one with 0.25° daily SST data (CNTL) and the other with smoothed SSTs over an area covering SST fronts associated with the Kuroshio, the Kuroshio Extension, the Oyashio, and the subpolar front (SMTHK). The storm track estimated from the local deepening rate of surface pressure (LDR) exhibits a prominent peak in this region in CNTL in January, whereas the storm-track peak weakens and moves eastward in SMTHK. Storm-track differences between CNTL and SMTHK are only found in explosive deepening events with LDR larger than 1 hPa h?1. A diagnostic equation of LDR suggests that latent heat release associated with large-scale condensation contributes to the storm-track enhancement. The SST fronts also affect the large-scale atmospheric circulation over the northeastern Pacific Ocean. The jet stream in the upper troposphere tends to meander northward, which is associated with positive sea level pressure (SLP) anomalies in CNTL, whereas the jet stream flows zonally in SMTHK. A composite analysis for the northwestern Pacific SLP anomaly suggests that frequent explosive cyclone development in the northwestern Pacific in CNTL causes downstream positive SLP anomalies over the Gulf of Alaska. Cyclones in SMTHK developing over the northeastern Pacific enhance the moisture flux along the west coast of North America, increasing precipitation in that region.
    • Download: (8.382Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Storm-Track Response to SST Fronts in the Northwestern Pacific Region in an AGCM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224303
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKuwano-Yoshida, Akira
    contributor authorMinobe, Shoshiro
    date accessioned2017-06-09T17:13:20Z
    date available2017-06-09T17:13:20Z
    date copyright2017/02/01
    date issued2016
    identifier issn0894-8755
    identifier otherams-81313.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224303
    description abstracthe storm-track response to sea surface temperature (SST) fronts in the northwestern Pacific region is investigated using an atmospheric general circulation model with a 50-km horizontal resolution. The following two experiments are conducted: one with 0.25° daily SST data (CNTL) and the other with smoothed SSTs over an area covering SST fronts associated with the Kuroshio, the Kuroshio Extension, the Oyashio, and the subpolar front (SMTHK). The storm track estimated from the local deepening rate of surface pressure (LDR) exhibits a prominent peak in this region in CNTL in January, whereas the storm-track peak weakens and moves eastward in SMTHK. Storm-track differences between CNTL and SMTHK are only found in explosive deepening events with LDR larger than 1 hPa h?1. A diagnostic equation of LDR suggests that latent heat release associated with large-scale condensation contributes to the storm-track enhancement. The SST fronts also affect the large-scale atmospheric circulation over the northeastern Pacific Ocean. The jet stream in the upper troposphere tends to meander northward, which is associated with positive sea level pressure (SLP) anomalies in CNTL, whereas the jet stream flows zonally in SMTHK. A composite analysis for the northwestern Pacific SLP anomaly suggests that frequent explosive cyclone development in the northwestern Pacific in CNTL causes downstream positive SLP anomalies over the Gulf of Alaska. Cyclones in SMTHK developing over the northeastern Pacific enhance the moisture flux along the west coast of North America, increasing precipitation in that region.
    publisherAmerican Meteorological Society
    titleStorm-Track Response to SST Fronts in the Northwestern Pacific Region in an AGCM
    typeJournal Paper
    journal volume30
    journal issue3
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-16-0331.1
    journal fristpage1081
    journal lastpage1102
    treeJournal of Climate:;2016:;volume( 030 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian