YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models

    Source: Journal of Climate:;2016:;volume( 029 ):;issue: 010::page 3501
    Author:
    Lind, Petter
    ,
    Lindstedt, David
    ,
    Kjellström, Erik
    ,
    Jones, Colin
    DOI: 10.1175/JCLI-D-15-0463.1
    Publisher: American Meteorological Society
    Abstract: igh-impact, locally intense rainfall episodes represent a major socioeconomic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HIRLAM?ALADIN Regional Mesoscale Operational NWP in Europe (HARMONIE) Climate (HCLIM) regional model with three different setups: two using convection parameterization at 15- and 6.25-km horizontal resolution (the latter within the ?gray zone? scale), with lateral boundary conditions provided by ERA-Interim and integrated over a pan-European domain, and one with explicit convection at 2-km resolution (HCLIM2) over the Alpine region driven by the 15-km model. Seven summer seasons were sampled and validated against two high-resolution observational datasets. All HCLIM versions underestimate the number of dry days and hours by 20%?40% and overestimate precipitation over the Alpine ridge. Also, only modest added value was found for gray-zone resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at subdaily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and mesoscale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in a convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.
    • Download: (3.691Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Spatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224131
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLind, Petter
    contributor authorLindstedt, David
    contributor authorKjellström, Erik
    contributor authorJones, Colin
    date accessioned2017-06-09T17:12:43Z
    date available2017-06-09T17:12:43Z
    date copyright2016/05/01
    date issued2016
    identifier issn0894-8755
    identifier otherams-81159.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224131
    description abstractigh-impact, locally intense rainfall episodes represent a major socioeconomic problem for societies worldwide, and at the same time these events are notoriously difficult to simulate properly in climate models. Here, the authors investigate how horizontal resolution and model formulation influence this issue by applying the HIRLAM?ALADIN Regional Mesoscale Operational NWP in Europe (HARMONIE) Climate (HCLIM) regional model with three different setups: two using convection parameterization at 15- and 6.25-km horizontal resolution (the latter within the ?gray zone? scale), with lateral boundary conditions provided by ERA-Interim and integrated over a pan-European domain, and one with explicit convection at 2-km resolution (HCLIM2) over the Alpine region driven by the 15-km model. Seven summer seasons were sampled and validated against two high-resolution observational datasets. All HCLIM versions underestimate the number of dry days and hours by 20%?40% and overestimate precipitation over the Alpine ridge. Also, only modest added value was found for gray-zone resolution. However, the single most important outcome is the substantial added value in HCLIM2 compared to the coarser model versions at subdaily time scales. It better captures the local-to-regional spatial patterns of precipitation reflecting a more realistic representation of the local and mesoscale dynamics. Further, the duration and spatial frequency of precipitation events, as well as extremes, are closer to observations. These characteristics are key ingredients in heavy rainfall events and associated flash floods, and the outstanding results using HCLIM in a convection-permitting setting are convincing and encourage further use of the model to study changes in such events in changing climates.
    publisherAmerican Meteorological Society
    titleSpatial and Temporal Characteristics of Summer Precipitation over Central Europe in a Suite of High-Resolution Climate Models
    typeJournal Paper
    journal volume29
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-15-0463.1
    journal fristpage3501
    journal lastpage3518
    treeJournal of Climate:;2016:;volume( 029 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian