YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Atmospheric Controls on Seasonal and Interannual Variations in the Precipitation Isotope in the East Asian Monsoon Region

    Source: Journal of Climate:;2015:;volume( 029 ):;issue: 004::page 1339
    Author:
    Cai, Zhongyin
    ,
    Tian, Lide
    DOI: 10.1175/JCLI-D-15-0363.1
    Publisher: American Meteorological Society
    Abstract: nderstanding variations in isotopic composition of precipitation from monsoon regions is crucial for its utilization in paleoclimate studies. This study explores the relationship between precipitation δ18O data for the East Asian monsoon (EAM) region archived in Global Network for Isotopes in Precipitation (GNIP) and the cloud data archived in ISCCP and their linkage with large-scale atmospheric circulation patterns. Results show that precipitation δ18O are significantly and positively correlated with cloud-top pressure (CTP) on both local and regional scales. Mechanically speaking, the stronger the monsoon convection precipitation, the higher the cloud and the lower the condensation temperature and thus the lower the precipitation δ18O. This result implies that the sharp drop in precipitation δ18O in the early summer in monsoonal Asia is related to the atmospheric circulation pattern rather than the different moisture sources, as was previously assumed. This result helps explain the processes leading to the observed ?amount effect.? A comparison of atmospheric circulation patterns with precipitation δ18O on an interannual scale shows that the positive CTP anomalies in the central Indo-Pacific within the weak Walker circulation (El Niño) can be associated with positive δ18O anomalies, while negative CTP anomalies in the central Indo-Pacific within the strong Walker circulation (La Niña) can be linked to negative δ18O anomalies. This result further confirms the aforementioned conclusion. This is important for understanding paleoclimatic change in monsoonal Asia, as interannual variations in stable isotopes in that region have received less attention in the past.
    • Download: (1.976Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Atmospheric Controls on Seasonal and Interannual Variations in the Precipitation Isotope in the East Asian Monsoon Region

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224099
    Collections
    • Journal of Climate

    Show full item record

    contributor authorCai, Zhongyin
    contributor authorTian, Lide
    date accessioned2017-06-09T17:12:37Z
    date available2017-06-09T17:12:37Z
    date copyright2016/02/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-81130.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224099
    description abstractnderstanding variations in isotopic composition of precipitation from monsoon regions is crucial for its utilization in paleoclimate studies. This study explores the relationship between precipitation δ18O data for the East Asian monsoon (EAM) region archived in Global Network for Isotopes in Precipitation (GNIP) and the cloud data archived in ISCCP and their linkage with large-scale atmospheric circulation patterns. Results show that precipitation δ18O are significantly and positively correlated with cloud-top pressure (CTP) on both local and regional scales. Mechanically speaking, the stronger the monsoon convection precipitation, the higher the cloud and the lower the condensation temperature and thus the lower the precipitation δ18O. This result implies that the sharp drop in precipitation δ18O in the early summer in monsoonal Asia is related to the atmospheric circulation pattern rather than the different moisture sources, as was previously assumed. This result helps explain the processes leading to the observed ?amount effect.? A comparison of atmospheric circulation patterns with precipitation δ18O on an interannual scale shows that the positive CTP anomalies in the central Indo-Pacific within the weak Walker circulation (El Niño) can be associated with positive δ18O anomalies, while negative CTP anomalies in the central Indo-Pacific within the strong Walker circulation (La Niña) can be linked to negative δ18O anomalies. This result further confirms the aforementioned conclusion. This is important for understanding paleoclimatic change in monsoonal Asia, as interannual variations in stable isotopes in that region have received less attention in the past.
    publisherAmerican Meteorological Society
    titleAtmospheric Controls on Seasonal and Interannual Variations in the Precipitation Isotope in the East Asian Monsoon Region
    typeJournal Paper
    journal volume29
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-15-0363.1
    journal fristpage1339
    journal lastpage1352
    treeJournal of Climate:;2015:;volume( 029 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian