YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Role of Standing Waves in Driving Persistent Anomalies of Upward Wave Activity Flux

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 024::page 9941
    Author:
    Watt-Meyer, Oliver
    ,
    Kushner, Paul J.
    DOI: 10.1175/JCLI-D-15-0317.1
    Publisher: American Meteorological Society
    Abstract: orthern Hemisphere stratospheric polar vortex strength variability is known to be largely driven by persistent anomalies in upward wave activity flux. It has also been shown that attenuation and amplification of the stationary wave is the primary way in which wave activity flux varies. This study determines the structure of the wave anomalies that interfere with the climatological wave and drive this variability. Using a recently developed spectral decomposition it is shown that fixed-node standing waves are the primary drivers of the ?linear interference? phenomenon. This is particularly true for the low-frequency component of the upward wave activity flux. The linear part of the flux is shown to be more persistent than the total flux and has significant tropospheric standing wave precursors that lead changes in the strength of the stratospheric polar vortex. Evidence is presented that current-generation high-top climate models are able to credibly simulate this variability in wave activity fluxes and the connection to polar vortex strength. Finally, the precursors to displacement and split sudden stratospheric warmings are examined. Displacement events are found to be preceded by about 25 days of anomalously high upward wave activity flux forced by standing waves amplifying the climatology. Split events have more short-lived wave activity flux precursors, which are dominated by the nonlinear part of the flux.
    • Download: (1.679Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Role of Standing Waves in Driving Persistent Anomalies of Upward Wave Activity Flux

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224077
    Collections
    • Journal of Climate

    Show full item record

    contributor authorWatt-Meyer, Oliver
    contributor authorKushner, Paul J.
    date accessioned2017-06-09T17:12:32Z
    date available2017-06-09T17:12:32Z
    date copyright2015/12/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-81110.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224077
    description abstractorthern Hemisphere stratospheric polar vortex strength variability is known to be largely driven by persistent anomalies in upward wave activity flux. It has also been shown that attenuation and amplification of the stationary wave is the primary way in which wave activity flux varies. This study determines the structure of the wave anomalies that interfere with the climatological wave and drive this variability. Using a recently developed spectral decomposition it is shown that fixed-node standing waves are the primary drivers of the ?linear interference? phenomenon. This is particularly true for the low-frequency component of the upward wave activity flux. The linear part of the flux is shown to be more persistent than the total flux and has significant tropospheric standing wave precursors that lead changes in the strength of the stratospheric polar vortex. Evidence is presented that current-generation high-top climate models are able to credibly simulate this variability in wave activity fluxes and the connection to polar vortex strength. Finally, the precursors to displacement and split sudden stratospheric warmings are examined. Displacement events are found to be preceded by about 25 days of anomalously high upward wave activity flux forced by standing waves amplifying the climatology. Split events have more short-lived wave activity flux precursors, which are dominated by the nonlinear part of the flux.
    publisherAmerican Meteorological Society
    titleThe Role of Standing Waves in Driving Persistent Anomalies of Upward Wave Activity Flux
    typeJournal Paper
    journal volume28
    journal issue24
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-15-0317.1
    journal fristpage9941
    journal lastpage9954
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian