YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Vector Autoregressive ENSO Prediction Model

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 021::page 8511
    Author:
    Chapman, David
    ,
    Cane, Mark A.
    ,
    Henderson, Naomi
    ,
    Lee, Dong Eun
    ,
    Chen, Chen
    DOI: 10.1175/JCLI-D-15-0306.1
    Publisher: American Meteorological Society
    Abstract: he authors investigate a sea surface temperature anomaly (SSTA)-only vector autoregressive (VAR) model for prediction of El Niño?Southern Oscillation (ENSO). VAR generalizes the linear inverse method (LIM) framework to incorporate an extended state vector including many months of recent prior SSTA in addition to the present state. An SSTA-only VAR model implicitly captures subsurface forcing observable in the LIM residual as red noise. Optimal skill is achieved using a state vector of order 14?17 months in an exhaustive 120-yr cross-validated hindcast assessment. It is found that VAR outperforms LIM, increasing forecast skill by 3 months, in a 30-yr retrospective forecast experiment.
    • Download: (1.658Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Vector Autoregressive ENSO Prediction Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224071
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChapman, David
    contributor authorCane, Mark A.
    contributor authorHenderson, Naomi
    contributor authorLee, Dong Eun
    contributor authorChen, Chen
    date accessioned2017-06-09T17:12:31Z
    date available2017-06-09T17:12:31Z
    date copyright2015/11/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-81104.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224071
    description abstracthe authors investigate a sea surface temperature anomaly (SSTA)-only vector autoregressive (VAR) model for prediction of El Niño?Southern Oscillation (ENSO). VAR generalizes the linear inverse method (LIM) framework to incorporate an extended state vector including many months of recent prior SSTA in addition to the present state. An SSTA-only VAR model implicitly captures subsurface forcing observable in the LIM residual as red noise. Optimal skill is achieved using a state vector of order 14?17 months in an exhaustive 120-yr cross-validated hindcast assessment. It is found that VAR outperforms LIM, increasing forecast skill by 3 months, in a 30-yr retrospective forecast experiment.
    publisherAmerican Meteorological Society
    titleA Vector Autoregressive ENSO Prediction Model
    typeJournal Paper
    journal volume28
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-15-0306.1
    journal fristpage8511
    journal lastpage8520
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian