YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Zonal Wind Response to ENSO in the CMIP5 Models: Roles of the Zonal and Meridional Shift of the ITCZ/SPCZ and the Simulated Climatological Precipitation

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 021::page 8556
    Author:
    Choi, Kit-Yan
    ,
    Vecchi, Gabriel A.
    ,
    Wittenberg, Andrew T.
    DOI: 10.1175/JCLI-D-15-0211.1
    Publisher: American Meteorological Society
    Abstract: he observed equatorial Pacific zonal wind response during El Niño tends to be stronger than during La Niña. Most global coupled climate models in phase 5 of CMIP (CMIP5) exhibit such nonlinearity, although weaker than observed. The wind response nonlinearity can be reproduced by driving a linear shallow water atmospheric model with a model?s or the observed precipitation anomalies, which can be decomposed into two main components: the zonal and meridional redistribution of the climatological precipitation. Both redistributions contribute comparably to the total rainfall anomalies, whereas the zonal redistribution plays the dominant role in the zonal wind response. The meridional redistribution component plays an indirect role in the nonlinear wind response by limiting the zonal redistribution during La Niña and thus enhancing the nonlinearity in the wind response significantly. During La Niña, the poleward movement of the ITCZ/SPCZ reduces the equatorial zonal-mean precipitation available for the zonal redistribution and its resulting zonal wind response. Conversely, during El Niño, the equatorward movement of the ITCZ and SPCZ do not limit the zonal redistribution of precipitation. The linear equatorial zonal wind response to ENSO is found to have a significant linear correlation with the equatorial central Pacific climatological precipitation and SST among the CMIP5 models. However, no linear correlation is found between the nonlinear equatorial zonal wind response and the climatological precipitation.
    • Download: (2.943Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Zonal Wind Response to ENSO in the CMIP5 Models: Roles of the Zonal and Meridional Shift of the ITCZ/SPCZ and the Simulated Climatological Precipitation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4224029
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChoi, Kit-Yan
    contributor authorVecchi, Gabriel A.
    contributor authorWittenberg, Andrew T.
    date accessioned2017-06-09T17:12:22Z
    date available2017-06-09T17:12:22Z
    date copyright2015/11/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-81067.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4224029
    description abstracthe observed equatorial Pacific zonal wind response during El Niño tends to be stronger than during La Niña. Most global coupled climate models in phase 5 of CMIP (CMIP5) exhibit such nonlinearity, although weaker than observed. The wind response nonlinearity can be reproduced by driving a linear shallow water atmospheric model with a model?s or the observed precipitation anomalies, which can be decomposed into two main components: the zonal and meridional redistribution of the climatological precipitation. Both redistributions contribute comparably to the total rainfall anomalies, whereas the zonal redistribution plays the dominant role in the zonal wind response. The meridional redistribution component plays an indirect role in the nonlinear wind response by limiting the zonal redistribution during La Niña and thus enhancing the nonlinearity in the wind response significantly. During La Niña, the poleward movement of the ITCZ/SPCZ reduces the equatorial zonal-mean precipitation available for the zonal redistribution and its resulting zonal wind response. Conversely, during El Niño, the equatorward movement of the ITCZ and SPCZ do not limit the zonal redistribution of precipitation. The linear equatorial zonal wind response to ENSO is found to have a significant linear correlation with the equatorial central Pacific climatological precipitation and SST among the CMIP5 models. However, no linear correlation is found between the nonlinear equatorial zonal wind response and the climatological precipitation.
    publisherAmerican Meteorological Society
    titleNonlinear Zonal Wind Response to ENSO in the CMIP5 Models: Roles of the Zonal and Meridional Shift of the ITCZ/SPCZ and the Simulated Climatological Precipitation
    typeJournal Paper
    journal volume28
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-15-0211.1
    journal fristpage8556
    journal lastpage8573
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian