YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Relationship between Atmospheric Convective Radiative Effect and Net Energy Transport in the Tropical Warm Pool

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 021::page 8620
    Author:
    Harrop, Bryce E.
    ,
    Hartmann, Dennis L.
    DOI: 10.1175/JCLI-D-15-0151.1
    Publisher: American Meteorological Society
    Abstract: eanalysis data and radiation budget data are used to calculate the role of the atmospheric cloud radiative effect in determining the magnitude of horizontal export of energy by the tropical atmosphere. Because tropical high clouds result in net radiative heating of the atmosphere, they increase the requirement for the atmosphere to export energy from convective regions. Increases in upper-tropospheric water vapor associated with convection contribute about a fifth of the atmospheric radiative heating anomaly associated with convection. Over the warmest tropical oceans, the radiative effect of convective clouds and associated water vapor is roughly two-thirds the value of the atmospheric energy transport. Cloud radiative heating and atmospheric heat transport increase at the same rate with increasing sea surface temperature, suggesting that the increased energy export is supplied by the radiative heating associated with convective clouds. The net cloud radiative effect at the top of the atmosphere is insensitive to changes in SST over the warm pool. Principal component analysis of satellite-retrieved cloud data reveals that the insensitivity of the net cloud radiative effect to SST is the result of changes in cloud amount offsetting changes in cloud optical thickness and cloud-top height. While increasing upward motion makes the cloud radiative effect more negative, that decrease is offset by reductions in outgoing longwave radiation owing to increases in water vapor.
    • Download: (1.399Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Relationship between Atmospheric Convective Radiative Effect and Net Energy Transport in the Tropical Warm Pool

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223987
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHarrop, Bryce E.
    contributor authorHartmann, Dennis L.
    date accessioned2017-06-09T17:12:11Z
    date available2017-06-09T17:12:11Z
    date copyright2015/11/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-81029.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223987
    description abstracteanalysis data and radiation budget data are used to calculate the role of the atmospheric cloud radiative effect in determining the magnitude of horizontal export of energy by the tropical atmosphere. Because tropical high clouds result in net radiative heating of the atmosphere, they increase the requirement for the atmosphere to export energy from convective regions. Increases in upper-tropospheric water vapor associated with convection contribute about a fifth of the atmospheric radiative heating anomaly associated with convection. Over the warmest tropical oceans, the radiative effect of convective clouds and associated water vapor is roughly two-thirds the value of the atmospheric energy transport. Cloud radiative heating and atmospheric heat transport increase at the same rate with increasing sea surface temperature, suggesting that the increased energy export is supplied by the radiative heating associated with convective clouds. The net cloud radiative effect at the top of the atmosphere is insensitive to changes in SST over the warm pool. Principal component analysis of satellite-retrieved cloud data reveals that the insensitivity of the net cloud radiative effect to SST is the result of changes in cloud amount offsetting changes in cloud optical thickness and cloud-top height. While increasing upward motion makes the cloud radiative effect more negative, that decrease is offset by reductions in outgoing longwave radiation owing to increases in water vapor.
    publisherAmerican Meteorological Society
    titleThe Relationship between Atmospheric Convective Radiative Effect and Net Energy Transport in the Tropical Warm Pool
    typeJournal Paper
    journal volume28
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-15-0151.1
    journal fristpage8620
    journal lastpage8633
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian