YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Representation of African Easterly Waves in CMIP5 Models

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 019::page 7702
    Author:
    Martin, Elinor R.
    ,
    Thorncroft, Chris
    DOI: 10.1175/JCLI-D-15-0145.1
    Publisher: American Meteorological Society
    Abstract: frican easterly waves (AEWs) can act as seed disturbances for tropical cyclones (TCs) in the Atlantic, and changes in future AEW activity may have important consequences for development of TCs. The simulation of AEWs was investigated using output from phase 5 of the Coupled Model Intercomparison Project (CMIP5) suite of experiments, including coupled historical and future simulations and atmosphere only (AMIP) simulations. Large biases exist in the simulation of low- (850 hPa) and midlevel (700 hPa) eddy kinetic energy (EKE, a proxy for AEW activity) in AMIP and historical simulations. CMIP5 models simulate excessive EKE and deficient rainfall south of 17°N. The same biases exist in historical and AMIP models and are not a consequence of errors in sea surface temperatures. The models also struggle to accurately couple AEWs and rainfall, with little improvement from CMIP3 models. CMIP5 models are unable to propagate AEWs across the coast and into the Atlantic, which is shown to be related to the resolution of the Guinea Highlands. Future projections of the annual cycle of AEW activity show a reduction in late spring and early summer and a large increase between July and October that is consistent with rainfall projections in the Sahel, but large differences exists in future projections between high- and low-resolution models. The simulation of AEWs is challenging for CMIP5 models and must be further diagnosed in order to accurately predict future TC activity and rainfall in the Sahel.
    • Download: (3.103Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Representation of African Easterly Waves in CMIP5 Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223983
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMartin, Elinor R.
    contributor authorThorncroft, Chris
    date accessioned2017-06-09T17:12:10Z
    date available2017-06-09T17:12:10Z
    date copyright2015/10/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-81025.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223983
    description abstractfrican easterly waves (AEWs) can act as seed disturbances for tropical cyclones (TCs) in the Atlantic, and changes in future AEW activity may have important consequences for development of TCs. The simulation of AEWs was investigated using output from phase 5 of the Coupled Model Intercomparison Project (CMIP5) suite of experiments, including coupled historical and future simulations and atmosphere only (AMIP) simulations. Large biases exist in the simulation of low- (850 hPa) and midlevel (700 hPa) eddy kinetic energy (EKE, a proxy for AEW activity) in AMIP and historical simulations. CMIP5 models simulate excessive EKE and deficient rainfall south of 17°N. The same biases exist in historical and AMIP models and are not a consequence of errors in sea surface temperatures. The models also struggle to accurately couple AEWs and rainfall, with little improvement from CMIP3 models. CMIP5 models are unable to propagate AEWs across the coast and into the Atlantic, which is shown to be related to the resolution of the Guinea Highlands. Future projections of the annual cycle of AEW activity show a reduction in late spring and early summer and a large increase between July and October that is consistent with rainfall projections in the Sahel, but large differences exists in future projections between high- and low-resolution models. The simulation of AEWs is challenging for CMIP5 models and must be further diagnosed in order to accurately predict future TC activity and rainfall in the Sahel.
    publisherAmerican Meteorological Society
    titleRepresentation of African Easterly Waves in CMIP5 Models
    typeJournal Paper
    journal volume28
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-15-0145.1
    journal fristpage7702
    journal lastpage7715
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian