Estimates of Air–Sea Feedbacks on Sea Surface Temperature Anomalies in the Southern OceanSource: Journal of Climate:;2015:;volume( 029 ):;issue: 002::page 439DOI: 10.1175/JCLI-D-15-0015.1Publisher: American Meteorological Society
Abstract: ea surface temperature (SST) air?sea feedback strengths and associated decay time scales in the Southern Ocean (SO) are estimated from observations and reanalysis datasets of SST, air?sea heat fluxes, and ocean mixed layer depths. The spatial, seasonal, and scale dependence of the air?sea heat flux feedbacks is mapped in circumpolar bands and implications for SST persistence times are explored. It is found that the damping effect of turbulent heat fluxes dominates over that due to radiative heat fluxes. The turbulent heat flux feedback acts to damp SSTs in all bands and spatial scales and in all seasons, at rates varying between 5 and 25 W m?2 K?1, while the radiative heat flux feedback has a more uniform spatial distribution with a magnitude rarely exceeding 5 W m?2 K?1. In particular, the implied net air?sea feedback (turbulent + radiative) on SST south of the polar front, and in the region of seasonal sea ice, is as weak as 5?10 W m?2 K?1 in the summertime on large spatial scales. Air?sea interaction alone thus allows SST signals induced around Antarctica in the summertime to persist for several seasons. The damping effect of mixed layer entrainment on SST anomalies averages to approximately 20 W m?2 K?1 across the ACC bands in the summer-to-winter entraining season and thereby reduces summertime SST persistence to less than half of that predicted by air?sea interaction alone (i.e., 3?6 months).
|
Collections
Show full item record
contributor author | Hausmann, Ute | |
contributor author | Czaja, Arnaud | |
contributor author | Marshall, John | |
date accessioned | 2017-06-09T17:11:55Z | |
date available | 2017-06-09T17:11:55Z | |
date copyright | 2016/01/01 | |
date issued | 2015 | |
identifier issn | 0894-8755 | |
identifier other | ams-80960.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4223909 | |
description abstract | ea surface temperature (SST) air?sea feedback strengths and associated decay time scales in the Southern Ocean (SO) are estimated from observations and reanalysis datasets of SST, air?sea heat fluxes, and ocean mixed layer depths. The spatial, seasonal, and scale dependence of the air?sea heat flux feedbacks is mapped in circumpolar bands and implications for SST persistence times are explored. It is found that the damping effect of turbulent heat fluxes dominates over that due to radiative heat fluxes. The turbulent heat flux feedback acts to damp SSTs in all bands and spatial scales and in all seasons, at rates varying between 5 and 25 W m?2 K?1, while the radiative heat flux feedback has a more uniform spatial distribution with a magnitude rarely exceeding 5 W m?2 K?1. In particular, the implied net air?sea feedback (turbulent + radiative) on SST south of the polar front, and in the region of seasonal sea ice, is as weak as 5?10 W m?2 K?1 in the summertime on large spatial scales. Air?sea interaction alone thus allows SST signals induced around Antarctica in the summertime to persist for several seasons. The damping effect of mixed layer entrainment on SST anomalies averages to approximately 20 W m?2 K?1 across the ACC bands in the summer-to-winter entraining season and thereby reduces summertime SST persistence to less than half of that predicted by air?sea interaction alone (i.e., 3?6 months). | |
publisher | American Meteorological Society | |
title | Estimates of Air–Sea Feedbacks on Sea Surface Temperature Anomalies in the Southern Ocean | |
type | Journal Paper | |
journal volume | 29 | |
journal issue | 2 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-15-0015.1 | |
journal fristpage | 439 | |
journal lastpage | 454 | |
tree | Journal of Climate:;2015:;volume( 029 ):;issue: 002 | |
contenttype | Fulltext |