YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 007::page 2764
    Author:
    Hagos, Samson
    ,
    Leung, L. Ruby
    ,
    Yang, Qing
    ,
    Zhao, Chun
    ,
    Lu, Jian
    DOI: 10.1175/JCLI-D-14-00567.1
    Publisher: American Meteorological Society
    Abstract: his study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of the Community Atmosphere Model (CAM4) at 240-, 120-, 60-, and 30-km model resolutions, each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of subtropical westerlies, atmospheric precipitable water content and profile, and to a lesser extent extratropical Rossby wave activity to model resolution and dynamical core. Real-world simulations using MPAS at 120- and 30-km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over the southern east Pacific, but the difference is smaller over the northern east Pacific. This interhemispheric difference is related to the enhancement of convection in the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over the southern east Pacific but has relatively little effect on those over the northern east Pacific. In comparison to the NCEP-2 reanalysis, MPAS real-world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier subtropics and poleward-shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.
    • Download: (1.844Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Resolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223690
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHagos, Samson
    contributor authorLeung, L. Ruby
    contributor authorYang, Qing
    contributor authorZhao, Chun
    contributor authorLu, Jian
    date accessioned2017-06-09T17:11:11Z
    date available2017-06-09T17:11:11Z
    date copyright2015/04/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-80762.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223690
    description abstracthis study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of the Community Atmosphere Model (CAM4) at 240-, 120-, 60-, and 30-km model resolutions, each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of subtropical westerlies, atmospheric precipitable water content and profile, and to a lesser extent extratropical Rossby wave activity to model resolution and dynamical core. Real-world simulations using MPAS at 120- and 30-km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over the southern east Pacific, but the difference is smaller over the northern east Pacific. This interhemispheric difference is related to the enhancement of convection in the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over the southern east Pacific but has relatively little effect on those over the northern east Pacific. In comparison to the NCEP-2 reanalysis, MPAS real-world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier subtropics and poleward-shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.
    publisherAmerican Meteorological Society
    titleResolution and Dynamical Core Dependence of Atmospheric River Frequency in Global Model Simulations
    typeJournal Paper
    journal volume28
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00567.1
    journal fristpage2764
    journal lastpage2776
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian