YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models

    Source: Journal of Climate:;2014:;volume( 028 ):;issue: 004::page 1630
    Author:
    Andrews, Timothy
    ,
    Gregory, Jonathan M.
    ,
    Webb, Mark J.
    DOI: 10.1175/JCLI-D-14-00545.1
    Publisher: American Meteorological Society
    Abstract: xperiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of the Coupled Model Intercomparison Project (CMIP5) atmosphere?ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined, the climate feedback parameter becomes significantly (95% confidence) less negative (i.e., the effective climate sensitivity increases) as time passes. Cloud feedback parameters show the largest changes. In the AOGCM mean, approximately 60% of the change in feedback parameter comes from the tropics (30°N?30°S). An important region involved is the tropical Pacific, where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea surface temperatures and sea ice prescribed from its AOGCM counterpart, each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. It is also demonstrated that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but nonzero change in net radiation at the top of the atmosphere (~?0.5 W m?2 in HadCM3).
    • Download: (3.177Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223675
    Collections
    • Journal of Climate

    Show full item record

    contributor authorAndrews, Timothy
    contributor authorGregory, Jonathan M.
    contributor authorWebb, Mark J.
    date accessioned2017-06-09T17:11:08Z
    date available2017-06-09T17:11:08Z
    date copyright2015/02/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80749.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223675
    description abstractxperiments with CO2 instantaneously quadrupled and then held constant are used to show that the relationship between the global-mean net heat input to the climate system and the global-mean surface air temperature change is nonlinear in phase 5 of the Coupled Model Intercomparison Project (CMIP5) atmosphere?ocean general circulation models (AOGCMs). The nonlinearity is shown to arise from a change in strength of climate feedbacks driven by an evolving pattern of surface warming. In 23 out of the 27 AOGCMs examined, the climate feedback parameter becomes significantly (95% confidence) less negative (i.e., the effective climate sensitivity increases) as time passes. Cloud feedback parameters show the largest changes. In the AOGCM mean, approximately 60% of the change in feedback parameter comes from the tropics (30°N?30°S). An important region involved is the tropical Pacific, where the surface warming intensifies in the east after a few decades. The dependence of climate feedbacks on an evolving pattern of surface warming is confirmed using the HadGEM2 and HadCM3 atmosphere GCMs (AGCMs). With monthly evolving sea surface temperatures and sea ice prescribed from its AOGCM counterpart, each AGCM reproduces the time-varying feedbacks, but when a fixed pattern of warming is prescribed the radiative response is linear with global temperature change or nearly so. It is also demonstrated that the regression and fixed-SST methods for evaluating effective radiative forcing are in principle different, because rapid SST adjustment when CO2 is changed can produce a pattern of surface temperature change with zero global mean but nonzero change in net radiation at the top of the atmosphere (~?0.5 W m?2 in HadCM3).
    publisherAmerican Meteorological Society
    titleThe Dependence of Radiative Forcing and Feedback on Evolving Patterns of Surface Temperature Change in Climate Models
    typeJournal Paper
    journal volume28
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00545.1
    journal fristpage1630
    journal lastpage1648
    treeJournal of Climate:;2014:;volume( 028 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian