YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Climatology of Cold Air Outbreaks and Their Impact on Air–Sea Heat Fluxes in the High-Latitude South Pacific

    Source: Journal of Climate:;2014:;volume( 028 ):;issue: 001::page 342
    Author:
    Papritz, Lukas
    ,
    Pfahl, Stephan
    ,
    Sodemann, Harald
    ,
    Wernli, Heini
    DOI: 10.1175/JCLI-D-14-00482.1
    Publisher: American Meteorological Society
    Abstract: climatology of cold air outbreaks (CAOs) in the high latitudes of the South Pacific and an analysis of the dynamical mechanisms leading to their formation are presented. Two major and distinct regions with frequent CAOs from autumn to spring are identified: one in the Ross Sea and another in the Amundsen and Bellingshausen Seas. Using an objective method to attribute CAOs to extratropical cyclones, it is shown that about 80% of the CAOs occur in association with the cyclonic flow induced by the passage of extratropical cyclones. Based on kinematic backward trajectories it is quantified that more than 40% of the air masses leading to CAOs originate from Antarctica and descend substantially, with the Ross Ice Shelf corridor as the major pathway. CAO trajectories descending from Antarctica differ from those originating over sea ice by a much lower specific humidity, stronger diabatic cooling, and much more intense adiabatic warming, while potential vorticity evolves similarly in both categories. In winter, CAOs are the major contributor to the net turbulent heat flux off the sea ice edge and CAO frequency strongly determines its interannual variation. Wintertime variations of the frequency of extratropical cyclones are strongly imprinted on the frequency of CAOs and the net turbulent heat and freshwater fluxes. In particular, much of the precipitation associated with the passage of extratropical cyclones is compensated by intense evaporation in cyclone-induced CAOs. This highlights the dominant role of the extratropical storm track in determining the variability of the buoyancy flux forcing of the Southern Ocean.
    • Download: (11.20Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Climatology of Cold Air Outbreaks and Their Impact on Air–Sea Heat Fluxes in the High-Latitude South Pacific

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223632
    Collections
    • Journal of Climate

    Show full item record

    contributor authorPapritz, Lukas
    contributor authorPfahl, Stephan
    contributor authorSodemann, Harald
    contributor authorWernli, Heini
    date accessioned2017-06-09T17:10:59Z
    date available2017-06-09T17:10:59Z
    date copyright2015/01/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80710.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223632
    description abstractclimatology of cold air outbreaks (CAOs) in the high latitudes of the South Pacific and an analysis of the dynamical mechanisms leading to their formation are presented. Two major and distinct regions with frequent CAOs from autumn to spring are identified: one in the Ross Sea and another in the Amundsen and Bellingshausen Seas. Using an objective method to attribute CAOs to extratropical cyclones, it is shown that about 80% of the CAOs occur in association with the cyclonic flow induced by the passage of extratropical cyclones. Based on kinematic backward trajectories it is quantified that more than 40% of the air masses leading to CAOs originate from Antarctica and descend substantially, with the Ross Ice Shelf corridor as the major pathway. CAO trajectories descending from Antarctica differ from those originating over sea ice by a much lower specific humidity, stronger diabatic cooling, and much more intense adiabatic warming, while potential vorticity evolves similarly in both categories. In winter, CAOs are the major contributor to the net turbulent heat flux off the sea ice edge and CAO frequency strongly determines its interannual variation. Wintertime variations of the frequency of extratropical cyclones are strongly imprinted on the frequency of CAOs and the net turbulent heat and freshwater fluxes. In particular, much of the precipitation associated with the passage of extratropical cyclones is compensated by intense evaporation in cyclone-induced CAOs. This highlights the dominant role of the extratropical storm track in determining the variability of the buoyancy flux forcing of the Southern Ocean.
    publisherAmerican Meteorological Society
    titleA Climatology of Cold Air Outbreaks and Their Impact on Air–Sea Heat Fluxes in the High-Latitude South Pacific
    typeJournal Paper
    journal volume28
    journal issue1
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00482.1
    journal fristpage342
    journal lastpage364
    treeJournal of Climate:;2014:;volume( 028 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian