YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 022::page 8951
    Author:
    Kim, Hae-Jeong
    ,
    Ahn, Joong-Bae
    DOI: 10.1175/JCLI-D-14-00457.1
    Publisher: American Meteorological Society
    Abstract: his study verifies the impact of improved ocean initial conditions on the Arctic Oscillation (AO) forecast skill by assessing the one-month lead predictability of boreal winter AO using the Pusan National University (PNU) coupled general circulation model (CGCM). Hindcast experiments were performed on two versions of the model, one does not use assimilated ocean initial data (V1.0) and one does (V1.1), and the results were comparatively analyzed. The forecast skill of V1.1 was superior to that of V1.0 in terms of the correlation coefficient between the predicted and observed AO indices. In the regression analysis, V1.1 showed more realistic spatial similarities than V1.0 did in predicted sea surface temperature and atmospheric circulation fields. The authors suggest the relative importance of the contribution of the ocean initial condition to the AO forecast skill was because the ocean data assimilation increased the predictability of the AO, to some extent, through the improved interaction between tropical forcing induced by realistic sea surface temperature (SST) and atmospheric circulation. In V1.1, as in the observation, the cold equatorial Pacific SST anomalies generated the weakened tropical convection and Hadley circulation over the Pacific, resulting in a decelerated subtropical jet and accelerated polar front jet in the extratropics. The intensified polar front jet implies a stronger stratospheric polar vortex relevant to the positive AO phase; hence, surface manifestations of the reflected positive AO phase were then induced through the downward propagation of the stratospheric polar vortex. The results suggest that properly assimilated initial ocean conditions might contribute to improve the predictability of global oscillations, such as the AO, through large-scale tropical ocean?atmosphere interaction.
    • Download: (7.635Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improvement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223613
    Collections
    • Journal of Climate

    Show full item record

    contributor authorKim, Hae-Jeong
    contributor authorAhn, Joong-Bae
    date accessioned2017-06-09T17:10:56Z
    date available2017-06-09T17:10:56Z
    date copyright2015/11/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-80693.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223613
    description abstracthis study verifies the impact of improved ocean initial conditions on the Arctic Oscillation (AO) forecast skill by assessing the one-month lead predictability of boreal winter AO using the Pusan National University (PNU) coupled general circulation model (CGCM). Hindcast experiments were performed on two versions of the model, one does not use assimilated ocean initial data (V1.0) and one does (V1.1), and the results were comparatively analyzed. The forecast skill of V1.1 was superior to that of V1.0 in terms of the correlation coefficient between the predicted and observed AO indices. In the regression analysis, V1.1 showed more realistic spatial similarities than V1.0 did in predicted sea surface temperature and atmospheric circulation fields. The authors suggest the relative importance of the contribution of the ocean initial condition to the AO forecast skill was because the ocean data assimilation increased the predictability of the AO, to some extent, through the improved interaction between tropical forcing induced by realistic sea surface temperature (SST) and atmospheric circulation. In V1.1, as in the observation, the cold equatorial Pacific SST anomalies generated the weakened tropical convection and Hadley circulation over the Pacific, resulting in a decelerated subtropical jet and accelerated polar front jet in the extratropics. The intensified polar front jet implies a stronger stratospheric polar vortex relevant to the positive AO phase; hence, surface manifestations of the reflected positive AO phase were then induced through the downward propagation of the stratospheric polar vortex. The results suggest that properly assimilated initial ocean conditions might contribute to improve the predictability of global oscillations, such as the AO, through large-scale tropical ocean?atmosphere interaction.
    publisherAmerican Meteorological Society
    titleImprovement in Prediction of the Arctic Oscillation with a Realistic Ocean Initial Condition in a CGCM
    typeJournal Paper
    journal volume28
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00457.1
    journal fristpage8951
    journal lastpage8967
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian