YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Challenges Associated with Adaptation to Future Urban Expansion

    Source: Journal of Climate:;2014:;volume( 028 ):;issue: 007::page 2544
    Author:
    Georgescu, M.
    DOI: 10.1175/JCLI-D-14-00290.1
    Publisher: American Meteorological Society
    Abstract: he most populated state in the United States, California, is projected to add millions of new inhabitants through the end of the current century, requiring considerable landscape conversion to the built environment. A suite of continuous multiyear, medium-range resolution (20-km grid spacing), ensemble-based simulations is examined to assess urban expansion climate effects on California in 2100, and potential strategies to alleviate them. Summertime [June?August (JJA)] warming due to urban expansion of 1°?2°C is greater relative to any other season, and is completely offset by a range of adaptation strategies: green roofs (highly transpiring), cool roofs (highly reflective), and hybrid roofs (with combined biophysical properties of green and cool roofs). After offsetting of urban-induced warming, cool and hybrid roofs lead to a further 1°?2°C reduction in JJA 2-m temperature, highlighting enhanced efficacy of these adaptation strategies. Guided by medium-range-resolution results, additional high-resolution (2-km grid spacing) experiments are conducted for a subset of the JJA periods conducted on a coarser scale. Urban-induced 1°?2°C warming (local maximum warming exceeds 4°C) is simulated, and is offset by cool and green roof deployment. In agreement with coarser-resolution results, maximum near-surface cooling is greater for cool roofs relative to green roofs. Reduced daytime warming associated with both cool and green roofs also modifies the convective mixed layer, reducing turbulent kinetic energy and planetary boundary layer height, although this impact is less for green roofs than for cool roofs. The results presented here demonstrate the importance of future urban expansion in California and illustrate climatic consequences with implications for regional air quality.
    • Download: (5.075Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Challenges Associated with Adaptation to Future Urban Expansion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223482
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGeorgescu, M.
    date accessioned2017-06-09T17:10:29Z
    date available2017-06-09T17:10:29Z
    date copyright2015/04/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80575.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223482
    description abstracthe most populated state in the United States, California, is projected to add millions of new inhabitants through the end of the current century, requiring considerable landscape conversion to the built environment. A suite of continuous multiyear, medium-range resolution (20-km grid spacing), ensemble-based simulations is examined to assess urban expansion climate effects on California in 2100, and potential strategies to alleviate them. Summertime [June?August (JJA)] warming due to urban expansion of 1°?2°C is greater relative to any other season, and is completely offset by a range of adaptation strategies: green roofs (highly transpiring), cool roofs (highly reflective), and hybrid roofs (with combined biophysical properties of green and cool roofs). After offsetting of urban-induced warming, cool and hybrid roofs lead to a further 1°?2°C reduction in JJA 2-m temperature, highlighting enhanced efficacy of these adaptation strategies. Guided by medium-range-resolution results, additional high-resolution (2-km grid spacing) experiments are conducted for a subset of the JJA periods conducted on a coarser scale. Urban-induced 1°?2°C warming (local maximum warming exceeds 4°C) is simulated, and is offset by cool and green roof deployment. In agreement with coarser-resolution results, maximum near-surface cooling is greater for cool roofs relative to green roofs. Reduced daytime warming associated with both cool and green roofs also modifies the convective mixed layer, reducing turbulent kinetic energy and planetary boundary layer height, although this impact is less for green roofs than for cool roofs. The results presented here demonstrate the importance of future urban expansion in California and illustrate climatic consequences with implications for regional air quality.
    publisherAmerican Meteorological Society
    titleChallenges Associated with Adaptation to Future Urban Expansion
    typeJournal Paper
    journal volume28
    journal issue7
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00290.1
    journal fristpage2544
    journal lastpage2563
    treeJournal of Climate:;2014:;volume( 028 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian