YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assessment of Modes of Interannual Variability of Southern Hemisphere Atmospheric Circulation in CMIP5 Models

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 021::page 8107
    Author:
    Grainger, Simon
    ,
    Frederiksen, Carsten S.
    ,
    Zheng, Xiaogu
    DOI: 10.1175/JCLI-D-14-00251.1
    Publisher: American Meteorological Society
    Abstract: n assessment is made of the modes of interannual variability in the seasonal mean summer and winter Southern Hemisphere (SH) 500-hPa geopotential height in the twentieth century in models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) dataset. Modes of variability of both the slow (signal) and intraseasonal (noise) components in the CMIP5 models are evaluated against those estimated from reanalysis data. There is general improvement in the leading modes of the slow (signal) component in CMIP5 models compared with the CMIP phase 3 (CMIP3) dataset. The largest improvement is in the spatial structures of the modes related to El Niño?Southern Oscillation variability in SH summer. An overall score metric is significantly higher for CMIP5 over CMIP3 in both seasons. The leading modes in the intraseasonal noise component are generally well reproduced in CMIP5 models, and there are few differences from CMIP3. A new total overall score metric is used to rank the CMIP5 models over both seasons. Weighting the seasons by the relative spread of overall scores is shown to be suitable for generating multimodel ensembles for further analysis of interannual variability. In multimodel ensembles, it is found that an ensemble of size 5 or 6 is sufficient in SH summer to reproduce well the dominant modes. In contrast, about 13 models are typically are required in SH winter. It is shown that it is necessary that the selected models individually reproduce well the leading modes of the slow component.
    • Download: (2.857Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assessment of Modes of Interannual Variability of Southern Hemisphere Atmospheric Circulation in CMIP5 Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223458
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGrainger, Simon
    contributor authorFrederiksen, Carsten S.
    contributor authorZheng, Xiaogu
    date accessioned2017-06-09T17:10:25Z
    date available2017-06-09T17:10:25Z
    date copyright2014/11/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80553.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223458
    description abstractn assessment is made of the modes of interannual variability in the seasonal mean summer and winter Southern Hemisphere (SH) 500-hPa geopotential height in the twentieth century in models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) dataset. Modes of variability of both the slow (signal) and intraseasonal (noise) components in the CMIP5 models are evaluated against those estimated from reanalysis data. There is general improvement in the leading modes of the slow (signal) component in CMIP5 models compared with the CMIP phase 3 (CMIP3) dataset. The largest improvement is in the spatial structures of the modes related to El Niño?Southern Oscillation variability in SH summer. An overall score metric is significantly higher for CMIP5 over CMIP3 in both seasons. The leading modes in the intraseasonal noise component are generally well reproduced in CMIP5 models, and there are few differences from CMIP3. A new total overall score metric is used to rank the CMIP5 models over both seasons. Weighting the seasons by the relative spread of overall scores is shown to be suitable for generating multimodel ensembles for further analysis of interannual variability. In multimodel ensembles, it is found that an ensemble of size 5 or 6 is sufficient in SH summer to reproduce well the dominant modes. In contrast, about 13 models are typically are required in SH winter. It is shown that it is necessary that the selected models individually reproduce well the leading modes of the slow component.
    publisherAmerican Meteorological Society
    titleAssessment of Modes of Interannual Variability of Southern Hemisphere Atmospheric Circulation in CMIP5 Models
    typeJournal Paper
    journal volume27
    journal issue21
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00251.1
    journal fristpage8107
    journal lastpage8125
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 021
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian