YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Climate Impacts of Large-Scale Wind Farms as Parameterized in a Global Climate Model

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 015::page 6160
    Author:
    Fitch, Anna C.
    DOI: 10.1175/JCLI-D-14-00245.1
    Publisher: American Meteorological Society
    Abstract: he local, regional, and global climate impacts of a large-scale global deployment of wind power in regionally high densities over land are investigated for a 60-yr period. Wind farms are represented as elevated momentum sinks as well as enhanced turbulence to represent turbine blade mixing in the Community Atmosphere Model, version 5 (CAM5), a global climate model. For a total installed capacity of 2.5 TW, to provide 16% of the world?s projected electricity demand in 2050, minimal impacts are found both regionally and globally on temperature, sensible and latent heat fluxes, cloud, and precipitation. A mean near-surface warming of 0.12 ± 0.07 K is seen within the wind farms, with a global-mean temperature change of ?0.013 ± 0.015 K. Impacts on wind speed and turbulence are more pronounced but largely confined within the wind farm areas. Increasing the wind farm areas to provide an installed capacity of 10 TW, or 65% of the 2050 electricity demand, causes further impacts; however, they remain slight overall. Maximum temperature changes are less than 0.5 K in the wind farm areas. To provide 20 TW of installed capacity, or 130% of the 2050 electricity demand, impacts both within the wind farms and beyond become more pronounced, with a doubling in turbine density. However, maximum temperature changes remain less than 0.7 K. Representing wind farms instead as an increase in surface roughness generally produces similar mean results; however, maximum changes increase, and influences on wind and turbulence are exaggerated. Overall, wind farm impacts are much weaker than those expected from greenhouse gas emissions, with very slight global-mean climate impacts.
    • Download: (2.840Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Climate Impacts of Large-Scale Wind Farms as Parameterized in a Global Climate Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223451
    Collections
    • Journal of Climate

    Show full item record

    contributor authorFitch, Anna C.
    date accessioned2017-06-09T17:10:23Z
    date available2017-06-09T17:10:23Z
    date copyright2015/08/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-80547.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223451
    description abstracthe local, regional, and global climate impacts of a large-scale global deployment of wind power in regionally high densities over land are investigated for a 60-yr period. Wind farms are represented as elevated momentum sinks as well as enhanced turbulence to represent turbine blade mixing in the Community Atmosphere Model, version 5 (CAM5), a global climate model. For a total installed capacity of 2.5 TW, to provide 16% of the world?s projected electricity demand in 2050, minimal impacts are found both regionally and globally on temperature, sensible and latent heat fluxes, cloud, and precipitation. A mean near-surface warming of 0.12 ± 0.07 K is seen within the wind farms, with a global-mean temperature change of ?0.013 ± 0.015 K. Impacts on wind speed and turbulence are more pronounced but largely confined within the wind farm areas. Increasing the wind farm areas to provide an installed capacity of 10 TW, or 65% of the 2050 electricity demand, causes further impacts; however, they remain slight overall. Maximum temperature changes are less than 0.5 K in the wind farm areas. To provide 20 TW of installed capacity, or 130% of the 2050 electricity demand, impacts both within the wind farms and beyond become more pronounced, with a doubling in turbine density. However, maximum temperature changes remain less than 0.7 K. Representing wind farms instead as an increase in surface roughness generally produces similar mean results; however, maximum changes increase, and influences on wind and turbulence are exaggerated. Overall, wind farm impacts are much weaker than those expected from greenhouse gas emissions, with very slight global-mean climate impacts.
    publisherAmerican Meteorological Society
    titleClimate Impacts of Large-Scale Wind Farms as Parameterized in a Global Climate Model
    typeJournal Paper
    journal volume28
    journal issue15
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00245.1
    journal fristpage6160
    journal lastpage6180
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 015
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian