YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Probabilistic Multisite Statistical Downscaling for Daily Precipitation Using a Bernoulli–Generalized Pareto Multivariate Autoregressive Model

    Source: Journal of Climate:;2015:;volume( 028 ):;issue: 006::page 2349
    Author:
    Ben Alaya, M. A.
    ,
    Chebana, F.
    ,
    Ouarda, T. B. M. J.
    DOI: 10.1175/JCLI-D-14-00237.1
    Publisher: American Meteorological Society
    Abstract: Bernoulli?generalized Pareto multivariate autoregressive (BMAR) model is proposed in this paper for multisite statistical downscaling of daily precipitation. The proposed model relies on a probabilistic framework to describe the conditional probability density function of precipitation at each station for a given day and handles multivariate dependence in both time and space using a multivariate autoregressive model. Within a probabilistic framework, BMAR employs a regression model whose outputs are parameters of the mixed Bernoulli?generalized Pareto distribution. As a stochastic component, the BMAR employs a latent multivariate autoregressive Gaussian field to preserve lag-0 and lag-1 cross correlations of precipitation at multiple sites. The proposed model is applied for the downscaling of AOGCM data to daily precipitation in the southern part of Québec, Canada. Reanalysis products are used in this study to assess the potential of the proposed method. Based on the mean errors (MEs), the root-mean-square errors (RMSEs), precipitation indices, and the ability to preserve lag-0 and lag-1 cross correlation, results of the study indicate the superiority of the proposed model over a multivariate multiple linear regression (MMLR) model and a multisite hybrid statistical downscaling procedure that combines MMLR and stochastic generator schemes.
    • Download: (1.868Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Probabilistic Multisite Statistical Downscaling for Daily Precipitation Using a Bernoulli–Generalized Pareto Multivariate Autoregressive Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223442
    Collections
    • Journal of Climate

    Show full item record

    contributor authorBen Alaya, M. A.
    contributor authorChebana, F.
    contributor authorOuarda, T. B. M. J.
    date accessioned2017-06-09T17:10:22Z
    date available2017-06-09T17:10:22Z
    date copyright2015/03/01
    date issued2015
    identifier issn0894-8755
    identifier otherams-80539.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223442
    description abstractBernoulli?generalized Pareto multivariate autoregressive (BMAR) model is proposed in this paper for multisite statistical downscaling of daily precipitation. The proposed model relies on a probabilistic framework to describe the conditional probability density function of precipitation at each station for a given day and handles multivariate dependence in both time and space using a multivariate autoregressive model. Within a probabilistic framework, BMAR employs a regression model whose outputs are parameters of the mixed Bernoulli?generalized Pareto distribution. As a stochastic component, the BMAR employs a latent multivariate autoregressive Gaussian field to preserve lag-0 and lag-1 cross correlations of precipitation at multiple sites. The proposed model is applied for the downscaling of AOGCM data to daily precipitation in the southern part of Québec, Canada. Reanalysis products are used in this study to assess the potential of the proposed method. Based on the mean errors (MEs), the root-mean-square errors (RMSEs), precipitation indices, and the ability to preserve lag-0 and lag-1 cross correlation, results of the study indicate the superiority of the proposed model over a multivariate multiple linear regression (MMLR) model and a multisite hybrid statistical downscaling procedure that combines MMLR and stochastic generator schemes.
    publisherAmerican Meteorological Society
    titleProbabilistic Multisite Statistical Downscaling for Daily Precipitation Using a Bernoulli–Generalized Pareto Multivariate Autoregressive Model
    typeJournal Paper
    journal volume28
    journal issue6
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00237.1
    journal fristpage2349
    journal lastpage2364
    treeJournal of Climate:;2015:;volume( 028 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian