YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Estimating the Sensitivity of the Atmospheric Teleconnection Patterns to SST Anomalies Using a Linear Statistical Method

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 024::page 9065
    Author:
    Li, Wei
    ,
    Forest, Chris E.
    DOI: 10.1175/JCLI-D-14-00231.1
    Publisher: American Meteorological Society
    Abstract: he Pacific?North American (PNA) pattern and the North Atlantic Oscillation (NAO) are known to contain a tropical sea surface temperature (SST)-forced component. This study examines the sensitivity of the wintertime NAO and PNA to patterns of tropical SST anomalies using a linear statistical?dynamic method. The NAO index is sensitive to SST anomalies over the tropical Indian Ocean, the central Pacific Ocean, and the Caribbean Sea, and the PNA index is sensitive to SST anomalies over the tropical Pacific and Indian Oceans. The NAO and PNA patterns can be reproduced well by combining the linear operator with the consistent SST anomaly over the Indian Ocean and the Niño-4 regions, respectively, suggesting that these are the most efficient ocean basins that force the teleconnection patterns. During the period of 1950?2000, the NAO time series reconstructed by using SST anomalies over the Indian Ocean + Niño-4 region + Caribbean Sea or the Indian Ocean + Niño-4 region is significantly correlated with the observation. Using a cross-spectral analysis, the NAO index is coherent with the SST forcing over the Indian Ocean at a significant 3-yr period and a less significant 10-yr period, with the Indian Ocean SST leading by about a quarter phase. Unsurprisingly, the PNA index is most coherent with the Niño-4 SST at 4?5-yr periods. When compared with the observation, the NAO variability from the linear reconstruction is better reproduced than that of the coupled model, which is better than the Atmospheric Model Intercomparison Project (AMIP) run, while the PNA variability from the AMIP simulations is better than that of the reconstruction, which is better than the coupled model run.
    • Download: (3.220Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Estimating the Sensitivity of the Atmospheric Teleconnection Patterns to SST Anomalies Using a Linear Statistical Method

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223437
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLi, Wei
    contributor authorForest, Chris E.
    date accessioned2017-06-09T17:10:21Z
    date available2017-06-09T17:10:21Z
    date copyright2014/12/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80534.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223437
    description abstracthe Pacific?North American (PNA) pattern and the North Atlantic Oscillation (NAO) are known to contain a tropical sea surface temperature (SST)-forced component. This study examines the sensitivity of the wintertime NAO and PNA to patterns of tropical SST anomalies using a linear statistical?dynamic method. The NAO index is sensitive to SST anomalies over the tropical Indian Ocean, the central Pacific Ocean, and the Caribbean Sea, and the PNA index is sensitive to SST anomalies over the tropical Pacific and Indian Oceans. The NAO and PNA patterns can be reproduced well by combining the linear operator with the consistent SST anomaly over the Indian Ocean and the Niño-4 regions, respectively, suggesting that these are the most efficient ocean basins that force the teleconnection patterns. During the period of 1950?2000, the NAO time series reconstructed by using SST anomalies over the Indian Ocean + Niño-4 region + Caribbean Sea or the Indian Ocean + Niño-4 region is significantly correlated with the observation. Using a cross-spectral analysis, the NAO index is coherent with the SST forcing over the Indian Ocean at a significant 3-yr period and a less significant 10-yr period, with the Indian Ocean SST leading by about a quarter phase. Unsurprisingly, the PNA index is most coherent with the Niño-4 SST at 4?5-yr periods. When compared with the observation, the NAO variability from the linear reconstruction is better reproduced than that of the coupled model, which is better than the Atmospheric Model Intercomparison Project (AMIP) run, while the PNA variability from the AMIP simulations is better than that of the reconstruction, which is better than the coupled model run.
    publisherAmerican Meteorological Society
    titleEstimating the Sensitivity of the Atmospheric Teleconnection Patterns to SST Anomalies Using a Linear Statistical Method
    typeJournal Paper
    journal volume27
    journal issue24
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00231.1
    journal fristpage9065
    journal lastpage9081
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 024
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian