Indo-Pacific Climate Interactions in the Absence of an Indonesian ThroughflowSource: Journal of Climate:;2014:;volume( 028 ):;issue: 013::page 5017DOI: 10.1175/JCLI-D-14-00114.1Publisher: American Meteorological Society
Abstract: he Pacific and Indian Oceans are connected by an oceanic passage called the Indonesian Throughflow (ITF). In this setting, modes of climate variability over the two oceanic basins interact. El Niño?Southern Oscillation (ENSO) events generate sea surface temperature anomalies (SSTAs) over the Indian Ocean that, in turn, influence ENSO evolution. This raises the question as to whether Indo-Pacific feedback interactions would still occur in a climate system without an Indonesian Throughflow. This issue is investigated here for the first time using a coupled climate model with a blocked Indonesian gateway and a series of partially decoupled experiments in which air?sea interactions over each ocean basin are in turn suppressed. Closing the Indonesian Throughflow significantly alters the mean climate state over the Pacific and Indian Oceans. The Pacific Ocean retains an ENSO-like variability, but it is shifted eastward. In contrast, the Indian Ocean dipole and the Indian Ocean basinwide mode both collapse into a single dominant and drastically transformed mode. While the relationship between ENSO and the altered Indian Ocean mode is weaker than that when the ITF is open, the decoupled experiments reveal a damping effect exerted between the two modes. Despite the weaker Indian Ocean SSTAs and the increased distance between these and the core of ENSO SSTAs, the interbasin interactions remain. This suggests that the atmospheric bridge is a robust element of the Indo-Pacific climate system, linking the Indian and Pacific Oceans even in the absence of an Indonesian Throughflow.
|
Collections
Show full item record
| contributor author | Kajtar, Jules B. | |
| contributor author | Santoso, Agus | |
| contributor author | England, Matthew H. | |
| contributor author | Cai, Wenju | |
| date accessioned | 2017-06-09T17:10:07Z | |
| date available | 2017-06-09T17:10:07Z | |
| date copyright | 2015/07/01 | |
| date issued | 2014 | |
| identifier issn | 0894-8755 | |
| identifier other | ams-80464.pdf | |
| identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4223359 | |
| description abstract | he Pacific and Indian Oceans are connected by an oceanic passage called the Indonesian Throughflow (ITF). In this setting, modes of climate variability over the two oceanic basins interact. El Niño?Southern Oscillation (ENSO) events generate sea surface temperature anomalies (SSTAs) over the Indian Ocean that, in turn, influence ENSO evolution. This raises the question as to whether Indo-Pacific feedback interactions would still occur in a climate system without an Indonesian Throughflow. This issue is investigated here for the first time using a coupled climate model with a blocked Indonesian gateway and a series of partially decoupled experiments in which air?sea interactions over each ocean basin are in turn suppressed. Closing the Indonesian Throughflow significantly alters the mean climate state over the Pacific and Indian Oceans. The Pacific Ocean retains an ENSO-like variability, but it is shifted eastward. In contrast, the Indian Ocean dipole and the Indian Ocean basinwide mode both collapse into a single dominant and drastically transformed mode. While the relationship between ENSO and the altered Indian Ocean mode is weaker than that when the ITF is open, the decoupled experiments reveal a damping effect exerted between the two modes. Despite the weaker Indian Ocean SSTAs and the increased distance between these and the core of ENSO SSTAs, the interbasin interactions remain. This suggests that the atmospheric bridge is a robust element of the Indo-Pacific climate system, linking the Indian and Pacific Oceans even in the absence of an Indonesian Throughflow. | |
| publisher | American Meteorological Society | |
| title | Indo-Pacific Climate Interactions in the Absence of an Indonesian Throughflow | |
| type | Journal Paper | |
| journal volume | 28 | |
| journal issue | 13 | |
| journal title | Journal of Climate | |
| identifier doi | 10.1175/JCLI-D-14-00114.1 | |
| journal fristpage | 5017 | |
| journal lastpage | 5029 | |
| tree | Journal of Climate:;2014:;volume( 028 ):;issue: 013 | |
| contenttype | Fulltext |