YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with Other Schemes

    Source: Journal of Climate:;2014:;volume( 028 ):;issue: 003::page 1268
    Author:
    Gettelman, A.
    ,
    Morrison, H.
    DOI: 10.1175/JCLI-D-14-00102.1
    Publisher: American Meteorological Society
    Abstract: rognostic precipitation is added to a cloud microphysical scheme for global climate models. Results indicate very similar performance to other commonly used mesoscale schemes in an offline driver for idealized warm rain cases, better than the previous version of the global model microphysics scheme with diagnostic precipitation. In the mixed phase regime, there is significantly more water and less ice, which may address a common bias seen with the scheme in climate simulations in the Arctic. For steady forcing cases, the scheme has limited sensitivity to time step out to the ~15-min time steps typical of global models. The scheme is similar to other schemes with moderate sensitivity to vertical resolution. The limited time step sensitivity bodes well for use of the scheme in multiscale models from the mesoscale to the large scale. The scheme is sensitive to idealized perturbations of cloud drop and crystal number. Precipitation decreases and condensate increases with increasing drop number, indicating substantial decreases in precipitation efficiency. The sensitivity is less than with the previous version of the scheme for low drop number concentrations (Nc < 100 cm?3). Ice condensate increases with ice number, with large decreases in liquid condensate as well for a mixed phase case. As expected with prognostic precipitation, accretion is stronger than with diagnostic precipitation and the accretion to autoconversion ratio increases faster with liquid water path (LWP), in better agreement with idealized models and earlier studies than the previous version.
    • Download: (2.750Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with Other Schemes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223349
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGettelman, A.
    contributor authorMorrison, H.
    date accessioned2017-06-09T17:10:04Z
    date available2017-06-09T17:10:04Z
    date copyright2015/02/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80455.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223349
    description abstractrognostic precipitation is added to a cloud microphysical scheme for global climate models. Results indicate very similar performance to other commonly used mesoscale schemes in an offline driver for idealized warm rain cases, better than the previous version of the global model microphysics scheme with diagnostic precipitation. In the mixed phase regime, there is significantly more water and less ice, which may address a common bias seen with the scheme in climate simulations in the Arctic. For steady forcing cases, the scheme has limited sensitivity to time step out to the ~15-min time steps typical of global models. The scheme is similar to other schemes with moderate sensitivity to vertical resolution. The limited time step sensitivity bodes well for use of the scheme in multiscale models from the mesoscale to the large scale. The scheme is sensitive to idealized perturbations of cloud drop and crystal number. Precipitation decreases and condensate increases with increasing drop number, indicating substantial decreases in precipitation efficiency. The sensitivity is less than with the previous version of the scheme for low drop number concentrations (Nc < 100 cm?3). Ice condensate increases with ice number, with large decreases in liquid condensate as well for a mixed phase case. As expected with prognostic precipitation, accretion is stronger than with diagnostic precipitation and the accretion to autoconversion ratio increases faster with liquid water path (LWP), in better agreement with idealized models and earlier studies than the previous version.
    publisherAmerican Meteorological Society
    titleAdvanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with Other Schemes
    typeJournal Paper
    journal volume28
    journal issue3
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00102.1
    journal fristpage1268
    journal lastpage1287
    treeJournal of Climate:;2014:;volume( 028 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian