YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Controls on the Persistence of La Niña

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 019::page 7335
    Author:
    DiNezio, Pedro N.
    ,
    Deser, Clara
    DOI: 10.1175/JCLI-D-14-00033.1
    Publisher: American Meteorological Society
    Abstract: large fraction (35%?50%) of observed La Niña events last two years or longer, in contrast to the great majority of El Niño events, which last one year. Here, the authors explore the nonlinear processes responsible for the multiyear persistence of La Niña in the Community Climate System Model, version 4 (CCSM4), a coupled climate model that simulates the asymmetric duration of La Niña and El Niño events realistically. The authors develop a nonlinear delayed-oscillator (NDO) model of the El Niño?Southern Oscillation (ENSO) to explore the mechanisms governing the duration of La Niña. The NDO includes nonlinear and seasonally dependent feedbacks derived from the CCSM4 heat budget, which allow it to simulate key ENSO features in quantitative agreement with CCSM4.Sensitivity experiments with the NDO show that the nonlinearity in the delayed thermocline feedback is the sole process controlling the duration of La Niña events. The authors? results show that, as La Niña events become stronger, the delayed thermocline response does not increase proportionally. This nonlinearity arises from two processes: 1) the response of winds to sea surface temperature anomalies and 2) the ability of thermocline depth anomalies to influence temperatures at the base of the mixed layer. Thus, strong La Niña events require that the thermocline remains deeper for longer than 1 yr for sea surface temperatures to return to neutral. Ocean reanalysis data show evidence for this thermocline nonlinearity, suggesting that this process could be at work in nature.
    • Download: (2.015Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Controls on the Persistence of La Niña

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223300
    Collections
    • Journal of Climate

    Show full item record

    contributor authorDiNezio, Pedro N.
    contributor authorDeser, Clara
    date accessioned2017-06-09T17:09:56Z
    date available2017-06-09T17:09:56Z
    date copyright2014/10/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80411.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223300
    description abstractlarge fraction (35%?50%) of observed La Niña events last two years or longer, in contrast to the great majority of El Niño events, which last one year. Here, the authors explore the nonlinear processes responsible for the multiyear persistence of La Niña in the Community Climate System Model, version 4 (CCSM4), a coupled climate model that simulates the asymmetric duration of La Niña and El Niño events realistically. The authors develop a nonlinear delayed-oscillator (NDO) model of the El Niño?Southern Oscillation (ENSO) to explore the mechanisms governing the duration of La Niña. The NDO includes nonlinear and seasonally dependent feedbacks derived from the CCSM4 heat budget, which allow it to simulate key ENSO features in quantitative agreement with CCSM4.Sensitivity experiments with the NDO show that the nonlinearity in the delayed thermocline feedback is the sole process controlling the duration of La Niña events. The authors? results show that, as La Niña events become stronger, the delayed thermocline response does not increase proportionally. This nonlinearity arises from two processes: 1) the response of winds to sea surface temperature anomalies and 2) the ability of thermocline depth anomalies to influence temperatures at the base of the mixed layer. Thus, strong La Niña events require that the thermocline remains deeper for longer than 1 yr for sea surface temperatures to return to neutral. Ocean reanalysis data show evidence for this thermocline nonlinearity, suggesting that this process could be at work in nature.
    publisherAmerican Meteorological Society
    titleNonlinear Controls on the Persistence of La Niña
    typeJournal Paper
    journal volume27
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-14-00033.1
    journal fristpage7335
    journal lastpage7355
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian