YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Energetic Constraints on the Position of the Intertropical Convergence Zone

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 013::page 4937
    Author:
    Bischoff, Tobias
    ,
    Schneider, Tapio
    DOI: 10.1175/JCLI-D-13-00650.1
    Publisher: American Meteorological Society
    Abstract: he intertropical convergence zone (ITCZ) can shift meridionally on seasonal and longer time scales. Previous studies have shown that the latitude of the ITCZ is negatively correlated with cross-equatorial atmospheric energy transport. For example, the ITCZ shifts southward as the Northern Hemisphere cools and the northward cross-equatorial energy transport strengthens in response. It has remained unclear what controls the sensitivity of the ITCZ position to cross-equatorial energy transport and what other factors may lead to shifts of the ITCZ position. Here it is shown that the sensitivity of the ITCZ position to cross-equatorial energy transport depends on the net energy input to the equatorial atmosphere: the net radiative energy input minus any energy uptake by the oceans. Changes in this energy input can also lead to ITCZ shifts. The cross-equatorial energy transport is related through a series of approximations to interhemispheric asymmetries in the near-surface temperature distribution. The resulting theory of the ITCZ position is tested in idealized general circulation model simulations with a slab ocean as lower boundary condition. In the simulations, cross-equatorial energy transport increases under global warming (primarily because extratropical latent energy fluxes strengthen), and this shifts the ITCZ poleward. The ITCZ shifts equatorward if primarily the tropics warm in response to an increased net energy input to the equatorial atmosphere. The results have implications for explaining the varied response of the ITCZ to global or primarily tropical changes in the atmospheric energy balance, such as those that occur under global warming or El Niño.
    • Download: (791.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Energetic Constraints on the Position of the Intertropical Convergence Zone

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223193
    Collections
    • Journal of Climate

    Show full item record

    contributor authorBischoff, Tobias
    contributor authorSchneider, Tapio
    date accessioned2017-06-09T17:09:35Z
    date available2017-06-09T17:09:35Z
    date copyright2014/07/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80314.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223193
    description abstracthe intertropical convergence zone (ITCZ) can shift meridionally on seasonal and longer time scales. Previous studies have shown that the latitude of the ITCZ is negatively correlated with cross-equatorial atmospheric energy transport. For example, the ITCZ shifts southward as the Northern Hemisphere cools and the northward cross-equatorial energy transport strengthens in response. It has remained unclear what controls the sensitivity of the ITCZ position to cross-equatorial energy transport and what other factors may lead to shifts of the ITCZ position. Here it is shown that the sensitivity of the ITCZ position to cross-equatorial energy transport depends on the net energy input to the equatorial atmosphere: the net radiative energy input minus any energy uptake by the oceans. Changes in this energy input can also lead to ITCZ shifts. The cross-equatorial energy transport is related through a series of approximations to interhemispheric asymmetries in the near-surface temperature distribution. The resulting theory of the ITCZ position is tested in idealized general circulation model simulations with a slab ocean as lower boundary condition. In the simulations, cross-equatorial energy transport increases under global warming (primarily because extratropical latent energy fluxes strengthen), and this shifts the ITCZ poleward. The ITCZ shifts equatorward if primarily the tropics warm in response to an increased net energy input to the equatorial atmosphere. The results have implications for explaining the varied response of the ITCZ to global or primarily tropical changes in the atmospheric energy balance, such as those that occur under global warming or El Niño.
    publisherAmerican Meteorological Society
    titleEnergetic Constraints on the Position of the Intertropical Convergence Zone
    typeJournal Paper
    journal volume27
    journal issue13
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00650.1
    journal fristpage4937
    journal lastpage4951
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 013
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian