YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A 19-Month Record of Marine Aerosol–Cloud–Radiation Properties Derived from DOE ARM Mobile Facility Deployment at the Azores. Part I: Cloud Fraction and Single-Layered MBL Cloud Properties

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 010::page 3665
    Author:
    Dong, Xiquan
    ,
    Xi, Baike
    ,
    Kennedy, Aaron
    ,
    Minnis, Patrick
    ,
    Wood, Robert
    DOI: 10.1175/JCLI-D-13-00553.1
    Publisher: American Meteorological Society
    Abstract: 19-month record of total and single-layered low (<3 km), middle (3?6 km), and high (>6 km) cloud fractions (CFs) and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties was generated from ground-based measurements at the Atmospheric Radiation Measurement Program (ARM) Azores site between June 2009 and December 2010. This is the most comprehensive dataset of marine cloud fraction and MBL cloud properties. The annual means of total CF and single-layered low, middle, and high CFs derived from ARM radar and lidar observations are 0.702, 0.271, 0.01, and 0.106, respectively. Greater total and single-layered high (>6 km) CFs occurred during the winter, whereas single-layered low (<3 km) CFs were more prominent during summer. Diurnal cycles for both total and low CFs were stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at ~1 km and a higher peak between 8 and 11 km during all seasons, except summer when only the low peak occurs. Persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, whereas the low pressure and moist air masses during winter generate more total and multilayered clouds, and deep frontal clouds associated with midlatitude cyclones.The seasonal variations of cloud heights and thickness are also associated with the seasonal synoptic patterns. The MBL cloud layer is low, warm, and thin with large liquid water path (LWP) and liquid water content (LWC) during summer, whereas during winter it is higher, colder, and thicker with reduced LWP and LWC. The cloud LWP and LWC values are greater at night than during daytime. The monthly mean daytime cloud droplet effective radius re values are nearly constant, while the daytime droplet number concentration Nd basically follows the LWC variation. There is a strong correlation between cloud condensation nuclei (CCN) concentration NCCN and Nd during January?May, probably due to the frequent low pressure systems because upward motion brings more surface CCN to cloud base (well-mixed boundary layer). During summer and autumn, the correlation between Nd and NCCN is not as strong as that during January?May because downward motion from high pressure systems is predominant. Compared to the compiled aircraft in situ measurements during the Atlantic Stratocumulus Transition Experiment (ASTEX), the cloud microphysical retrievals in this study agree well with historical aircraft data. Different air mass sources over the ARM Azores site have significant impacts on the cloud microphysical properties and surface CCN as demonstrated by great variability in NCCN and cloud microphysical properties during some months.
    • Download: (3.376Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A 19-Month Record of Marine Aerosol–Cloud–Radiation Properties Derived from DOE ARM Mobile Facility Deployment at the Azores. Part I: Cloud Fraction and Single-Layered MBL Cloud Properties

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223130
    Collections
    • Journal of Climate

    Show full item record

    contributor authorDong, Xiquan
    contributor authorXi, Baike
    contributor authorKennedy, Aaron
    contributor authorMinnis, Patrick
    contributor authorWood, Robert
    date accessioned2017-06-09T17:09:22Z
    date available2017-06-09T17:09:22Z
    date copyright2014/05/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80258.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223130
    description abstract19-month record of total and single-layered low (<3 km), middle (3?6 km), and high (>6 km) cloud fractions (CFs) and the single-layered marine boundary layer (MBL) cloud macrophysical and microphysical properties was generated from ground-based measurements at the Atmospheric Radiation Measurement Program (ARM) Azores site between June 2009 and December 2010. This is the most comprehensive dataset of marine cloud fraction and MBL cloud properties. The annual means of total CF and single-layered low, middle, and high CFs derived from ARM radar and lidar observations are 0.702, 0.271, 0.01, and 0.106, respectively. Greater total and single-layered high (>6 km) CFs occurred during the winter, whereas single-layered low (<3 km) CFs were more prominent during summer. Diurnal cycles for both total and low CFs were stronger during summer than during winter. The CFs are bimodally distributed in the vertical with a lower peak at ~1 km and a higher peak between 8 and 11 km during all seasons, except summer when only the low peak occurs. Persistent high pressure and dry conditions produce more single-layered MBL clouds and fewer total clouds during summer, whereas the low pressure and moist air masses during winter generate more total and multilayered clouds, and deep frontal clouds associated with midlatitude cyclones.The seasonal variations of cloud heights and thickness are also associated with the seasonal synoptic patterns. The MBL cloud layer is low, warm, and thin with large liquid water path (LWP) and liquid water content (LWC) during summer, whereas during winter it is higher, colder, and thicker with reduced LWP and LWC. The cloud LWP and LWC values are greater at night than during daytime. The monthly mean daytime cloud droplet effective radius re values are nearly constant, while the daytime droplet number concentration Nd basically follows the LWC variation. There is a strong correlation between cloud condensation nuclei (CCN) concentration NCCN and Nd during January?May, probably due to the frequent low pressure systems because upward motion brings more surface CCN to cloud base (well-mixed boundary layer). During summer and autumn, the correlation between Nd and NCCN is not as strong as that during January?May because downward motion from high pressure systems is predominant. Compared to the compiled aircraft in situ measurements during the Atlantic Stratocumulus Transition Experiment (ASTEX), the cloud microphysical retrievals in this study agree well with historical aircraft data. Different air mass sources over the ARM Azores site have significant impacts on the cloud microphysical properties and surface CCN as demonstrated by great variability in NCCN and cloud microphysical properties during some months.
    publisherAmerican Meteorological Society
    titleA 19-Month Record of Marine Aerosol–Cloud–Radiation Properties Derived from DOE ARM Mobile Facility Deployment at the Azores. Part I: Cloud Fraction and Single-Layered MBL Cloud Properties
    typeJournal Paper
    journal volume27
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00553.1
    journal fristpage3665
    journal lastpage3682
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian