YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Statistical Downscaling Multimodel Forecasts for Seasonal Precipitation and Surface Temperature over the Southeastern United States

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 022::page 8384
    Author:
    Tian, Di
    ,
    Martinez, Christopher J.
    ,
    Graham, Wendy D.
    ,
    Hwang, Syewoon
    DOI: 10.1175/JCLI-D-13-00481.1
    Publisher: American Meteorological Society
    Abstract: his study compared two types of approaches to downscale seasonal precipitation (P) and 2-m air temperature (T2M) forecasts from the North American Multimodel Ensemble (NMME) over the states of Alabama, Georgia, and Florida in the southeastern United States (SEUS). Each NMME model forecast was evaluated. Two multimodel ensemble (MME) schemes were tested by assigning equal weight to all forecast members (SuperEns) or by assigning equal weights to each model?s ensemble mean (MeanEns). One type of downscaling approach used was a model output statistics (MOS) method, which was based on direct spatial disaggregation and bias correction of the NMME P and T2M forecasts using the quantile mapping technique [spatial disaggregation with bias correction (SDBC)]. The other type of approach used was a perfect prognosis (PP) approach using nonparametric locally weighted polynomial regression (LWPR) models, which used the NMME forecasts of Niño-3.4 sea surface temperatures (SSTs) to predict local-scale P and T2M. Both SDBC and LWPR downscaled P showed skill in winter but no skill or limited skill in summer at all lead times for all NMME models. The SDBC downscaled T2M were skillful only for the Climate Forecast System, version 2 (CFSv2), model even at far lead times, whereas the LWPR downscaled T2M showed limited skill or no skill for all NMME models. In many cases, the LWPR method showed significantly higher skill than the SDBC. After bias correction, the SuperEns mostly showed higher skill than the MeanEns and most of the single models, but its skill did not outperform the best single model.
    • Download: (10.48Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Statistical Downscaling Multimodel Forecasts for Seasonal Precipitation and Surface Temperature over the Southeastern United States

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223083
    Collections
    • Journal of Climate

    Show full item record

    contributor authorTian, Di
    contributor authorMartinez, Christopher J.
    contributor authorGraham, Wendy D.
    contributor authorHwang, Syewoon
    date accessioned2017-06-09T17:09:11Z
    date available2017-06-09T17:09:11Z
    date copyright2014/11/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80215.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223083
    description abstracthis study compared two types of approaches to downscale seasonal precipitation (P) and 2-m air temperature (T2M) forecasts from the North American Multimodel Ensemble (NMME) over the states of Alabama, Georgia, and Florida in the southeastern United States (SEUS). Each NMME model forecast was evaluated. Two multimodel ensemble (MME) schemes were tested by assigning equal weight to all forecast members (SuperEns) or by assigning equal weights to each model?s ensemble mean (MeanEns). One type of downscaling approach used was a model output statistics (MOS) method, which was based on direct spatial disaggregation and bias correction of the NMME P and T2M forecasts using the quantile mapping technique [spatial disaggregation with bias correction (SDBC)]. The other type of approach used was a perfect prognosis (PP) approach using nonparametric locally weighted polynomial regression (LWPR) models, which used the NMME forecasts of Niño-3.4 sea surface temperatures (SSTs) to predict local-scale P and T2M. Both SDBC and LWPR downscaled P showed skill in winter but no skill or limited skill in summer at all lead times for all NMME models. The SDBC downscaled T2M were skillful only for the Climate Forecast System, version 2 (CFSv2), model even at far lead times, whereas the LWPR downscaled T2M showed limited skill or no skill for all NMME models. In many cases, the LWPR method showed significantly higher skill than the SDBC. After bias correction, the SuperEns mostly showed higher skill than the MeanEns and most of the single models, but its skill did not outperform the best single model.
    publisherAmerican Meteorological Society
    titleStatistical Downscaling Multimodel Forecasts for Seasonal Precipitation and Surface Temperature over the Southeastern United States
    typeJournal Paper
    journal volume27
    journal issue22
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00481.1
    journal fristpage8384
    journal lastpage8411
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 022
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian