YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    ENSO Asymmetry in CMIP5 Models

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 011::page 4070
    Author:
    Zhang, Tao
    ,
    Sun, De-Zheng
    DOI: 10.1175/JCLI-D-13-00454.1
    Publisher: American Meteorological Society
    Abstract: he El Niño?La Niña asymmetry is evaluated in 14 coupled models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results show that an underestimate of ENSO asymmetry, a common problem noted in CMIP3 models, remains a common problem in CMIP5 coupled models. The weaker ENSO asymmetry in the models primarily results from a weaker SST warm anomaly over the eastern Pacific and a westward shift of the center of the anomaly. In contrast, SST anomalies for the La Niña phase are close to observations.Corresponding Atmospheric Model Intercomparison Project (AMIP) runs are analyzed to understand the causes of the underestimate of ENSO asymmetry in coupled models. The analysis reveals that during the warm phase, precipitation anomalies are weaker over the eastern Pacific, and westerly wind anomalies are confined more to the west in most models. The time-mean zonal winds are stronger over the equatorial central and eastern Pacific for most models. Wind-forced ocean GCM experiments suggest that the stronger time-mean zonal winds and weaker asymmetry in the interannual anomalies of the zonal winds in AMIP models can both be a contributing factor to a weaker ENSO asymmetry in the corresponding coupled models, but the former appears to be a more fundamental factor, possibly through its impact on the mean state. The study suggests that the underestimate of ENSO asymmetry in the CMIP5 coupled models is at least in part of atmospheric origin.
    • Download: (3.481Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      ENSO Asymmetry in CMIP5 Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223059
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZhang, Tao
    contributor authorSun, De-Zheng
    date accessioned2017-06-09T17:09:07Z
    date available2017-06-09T17:09:07Z
    date copyright2014/06/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80194.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223059
    description abstracthe El Niño?La Niña asymmetry is evaluated in 14 coupled models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The results show that an underestimate of ENSO asymmetry, a common problem noted in CMIP3 models, remains a common problem in CMIP5 coupled models. The weaker ENSO asymmetry in the models primarily results from a weaker SST warm anomaly over the eastern Pacific and a westward shift of the center of the anomaly. In contrast, SST anomalies for the La Niña phase are close to observations.Corresponding Atmospheric Model Intercomparison Project (AMIP) runs are analyzed to understand the causes of the underestimate of ENSO asymmetry in coupled models. The analysis reveals that during the warm phase, precipitation anomalies are weaker over the eastern Pacific, and westerly wind anomalies are confined more to the west in most models. The time-mean zonal winds are stronger over the equatorial central and eastern Pacific for most models. Wind-forced ocean GCM experiments suggest that the stronger time-mean zonal winds and weaker asymmetry in the interannual anomalies of the zonal winds in AMIP models can both be a contributing factor to a weaker ENSO asymmetry in the corresponding coupled models, but the former appears to be a more fundamental factor, possibly through its impact on the mean state. The study suggests that the underestimate of ENSO asymmetry in the CMIP5 coupled models is at least in part of atmospheric origin.
    publisherAmerican Meteorological Society
    titleENSO Asymmetry in CMIP5 Models
    typeJournal Paper
    journal volume27
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00454.1
    journal fristpage4070
    journal lastpage4093
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian