YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 018::page 7151
    Author:
    Liu, Y.
    ,
    Liu, Z.
    ,
    Zhang, S.
    ,
    Jacob, R.
    ,
    Lu, F.
    ,
    Rong, X.
    ,
    Wu, S.
    DOI: 10.1175/JCLI-D-13-00406.1
    Publisher: American Meteorological Society
    Abstract: arameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean?atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parameter estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Overall, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.
    • Download: (1.770Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4223026
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLiu, Y.
    contributor authorLiu, Z.
    contributor authorZhang, S.
    contributor authorJacob, R.
    contributor authorLu, F.
    contributor authorRong, X.
    contributor authorWu, S.
    date accessioned2017-06-09T17:08:59Z
    date available2017-06-09T17:08:59Z
    date copyright2014/09/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80164.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4223026
    description abstractarameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean?atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parameter estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of the parameters are reduced by 90% in ~8 years of assimilation. Finally, the improved parameters also improve the model climatology. With the optimized parameters, the bias of the climatology of SST is reduced by ~90%. Overall, this study suggests the feasibility of ensemble-based parameter estimation in a fully coupled general circulation model.
    publisherAmerican Meteorological Society
    titleEnsemble-Based Parameter Estimation in a Coupled General Circulation Model
    typeJournal Paper
    journal volume27
    journal issue18
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00406.1
    journal fristpage7151
    journal lastpage7162
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 018
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian