YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Earth’s Energy Imbalance

    Source: Journal of Climate:;2014:;volume( 027 ):;issue: 009::page 3129
    Author:
    Trenberth, Kevin E.
    ,
    Fasullo, John T.
    ,
    Balmaseda, Magdalena A.
    DOI: 10.1175/JCLI-D-13-00294.1
    Publisher: American Meteorological Society
    Abstract: limate change from increased greenhouse gases arises from a global energy imbalance at the top of the atmosphere (TOA). TOA measurements of radiation from space can track changes over time but lack absolute accuracy. An inventory of energy storage changes shows that over 90% of the imbalance is manifested as a rise in ocean heat content (OHC). Data from the Ocean Reanalysis System, version 4 (ORAS4), and other OHC-estimated rates of change are used to compare with model-based estimates of TOA energy imbalance [from the Community Climate System Model, version 4 (CCSM4)] and with TOA satellite measurements for the year 2000 onward. Most ocean-only OHC analyses extend to only 700-m depth, have large discrepancies among the rates of change of OHC, and do not resolve interannual variability adequately to capture ENSO and volcanic eruption effects, all aspects that are improved with assimilation of multivariate data. ORAS4 rates of change of OHC quantitatively agree with the radiative forcing estimates of impacts of the three major volcanic eruptions since 1960 (Mt. Agung, 1963; El Chichón, 1982; and Mt. Pinatubo, 1991). The natural variability of the energy imbalance is substantial from month to month, associated with cloud and weather variations, and interannually mainly associated with ENSO, while the sun affects 15% of the climate change signal on decadal time scales. All estimates (OHC and TOA) show that over the past decade the energy imbalance ranges between about 0.5 and 1 W m?2. By using the full-depth ocean, there is a better overall accounting for energy, but discrepancies remain at interannual time scales between OHC- and TOA-based estimates, notably in 2008/09.
    • Download: (1.907Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Earth’s Energy Imbalance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222946
    Collections
    • Journal of Climate

    Show full item record

    contributor authorTrenberth, Kevin E.
    contributor authorFasullo, John T.
    contributor authorBalmaseda, Magdalena A.
    date accessioned2017-06-09T17:08:44Z
    date available2017-06-09T17:08:44Z
    date copyright2014/05/01
    date issued2014
    identifier issn0894-8755
    identifier otherams-80092.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222946
    description abstractlimate change from increased greenhouse gases arises from a global energy imbalance at the top of the atmosphere (TOA). TOA measurements of radiation from space can track changes over time but lack absolute accuracy. An inventory of energy storage changes shows that over 90% of the imbalance is manifested as a rise in ocean heat content (OHC). Data from the Ocean Reanalysis System, version 4 (ORAS4), and other OHC-estimated rates of change are used to compare with model-based estimates of TOA energy imbalance [from the Community Climate System Model, version 4 (CCSM4)] and with TOA satellite measurements for the year 2000 onward. Most ocean-only OHC analyses extend to only 700-m depth, have large discrepancies among the rates of change of OHC, and do not resolve interannual variability adequately to capture ENSO and volcanic eruption effects, all aspects that are improved with assimilation of multivariate data. ORAS4 rates of change of OHC quantitatively agree with the radiative forcing estimates of impacts of the three major volcanic eruptions since 1960 (Mt. Agung, 1963; El Chichón, 1982; and Mt. Pinatubo, 1991). The natural variability of the energy imbalance is substantial from month to month, associated with cloud and weather variations, and interannually mainly associated with ENSO, while the sun affects 15% of the climate change signal on decadal time scales. All estimates (OHC and TOA) show that over the past decade the energy imbalance ranges between about 0.5 and 1 W m?2. By using the full-depth ocean, there is a better overall accounting for energy, but discrepancies remain at interannual time scales between OHC- and TOA-based estimates, notably in 2008/09.
    publisherAmerican Meteorological Society
    titleEarth’s Energy Imbalance
    typeJournal Paper
    journal volume27
    journal issue9
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00294.1
    journal fristpage3129
    journal lastpage3144
    treeJournal of Climate:;2014:;volume( 027 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian