YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean–Western Pacific Anticyclone Teleconnection

    Source: Journal of Climate:;2013:;volume( 027 ):;issue: 004::page 1679
    Author:
    Song, Fengfei
    ,
    Zhou, Tianjun
    DOI: 10.1175/JCLI-D-13-00248.1
    Publisher: American Meteorological Society
    Abstract: he climatology and interannual variability of East Asian summer monsoon (EASM) are investigated by using 13 atmospheric general circulation models (AGCMs) from phase 3 of the Coupled Model Intercomparison Project (CMIP3) and 19 AGCMs from CMIP5. The mean low-level monsoon circulation is reasonably reproduced in the multimodel ensemble mean (MME) of CMIP3 and CMIP5 AGCMs, except for a northward shift of the western Pacific subtropical high. However, the monsoon rainband known as mei-yu/baiu/changma (28°?38°N, 105°?150°E) is poorly simulated, although a significant improvement is seen from CMIP3 to CMIP5. The interannual EASM pattern is obtained by regressing the precipitation and 850-hPa wind on the observed EASM index. The observed dipole rainfall pattern is partly reproduced in CMIP3 and CMIP5 MME but with two deficiencies: weaker magnitude and southward shift of the dipole rainfall pattern. These deficiencies are closely related to the weaker and southward shift of the western Pacific anticyclone (WPAC). The simulation skill of the interannual EASM pattern has been significantly improved from CMIP3 to CMIP5 MME accompanied by the enhanced dipole rainfall pattern and WPAC. Analyses demonstrate that the tropical eastern Indian Ocean (IO) rainfall response to local warm SST anomalies and the associated Kelvin wave response over the Indo?western Pacific region are important to maintain the WPAC. A successful reproduction of interannual EASM pattern depends highly on the IO?WPAC teleconnection. The significant improvement in the interannual EASM pattern from CMIP3 to CMIP5 MME is also due to a better reproduction of this teleconnection in CMIP5 models.
    • Download: (4.701Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean–Western Pacific Anticyclone Teleconnection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222907
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSong, Fengfei
    contributor authorZhou, Tianjun
    date accessioned2017-06-09T17:08:36Z
    date available2017-06-09T17:08:36Z
    date copyright2014/02/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-80057.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222907
    description abstracthe climatology and interannual variability of East Asian summer monsoon (EASM) are investigated by using 13 atmospheric general circulation models (AGCMs) from phase 3 of the Coupled Model Intercomparison Project (CMIP3) and 19 AGCMs from CMIP5. The mean low-level monsoon circulation is reasonably reproduced in the multimodel ensemble mean (MME) of CMIP3 and CMIP5 AGCMs, except for a northward shift of the western Pacific subtropical high. However, the monsoon rainband known as mei-yu/baiu/changma (28°?38°N, 105°?150°E) is poorly simulated, although a significant improvement is seen from CMIP3 to CMIP5. The interannual EASM pattern is obtained by regressing the precipitation and 850-hPa wind on the observed EASM index. The observed dipole rainfall pattern is partly reproduced in CMIP3 and CMIP5 MME but with two deficiencies: weaker magnitude and southward shift of the dipole rainfall pattern. These deficiencies are closely related to the weaker and southward shift of the western Pacific anticyclone (WPAC). The simulation skill of the interannual EASM pattern has been significantly improved from CMIP3 to CMIP5 MME accompanied by the enhanced dipole rainfall pattern and WPAC. Analyses demonstrate that the tropical eastern Indian Ocean (IO) rainfall response to local warm SST anomalies and the associated Kelvin wave response over the Indo?western Pacific region are important to maintain the WPAC. A successful reproduction of interannual EASM pattern depends highly on the IO?WPAC teleconnection. The significant improvement in the interannual EASM pattern from CMIP3 to CMIP5 MME is also due to a better reproduction of this teleconnection in CMIP5 models.
    publisherAmerican Meteorological Society
    titleInterannual Variability of East Asian Summer Monsoon Simulated by CMIP3 and CMIP5 AGCMs: Skill Dependence on Indian Ocean–Western Pacific Anticyclone Teleconnection
    typeJournal Paper
    journal volume27
    journal issue4
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00248.1
    journal fristpage1679
    journal lastpage1697
    treeJournal of Climate:;2013:;volume( 027 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian