YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigating the Role of Ocean–Atmosphere Coupling in the North Pacific Ocean

    Source: Journal of Climate:;2013:;volume( 027 ):;issue: 002::page 592
    Author:
    Smirnov, Dimitry
    ,
    Newman, Matthew
    ,
    Alexander, Michael A.
    DOI: 10.1175/JCLI-D-13-00123.1
    Publisher: American Meteorological Society
    Abstract: ir?sea interaction over the North Pacific is diagnosed using a simple, local coupled autoregressive model constructed from observed 7-day running-mean sea surface temperature (SST) and 2-m air temperature TA anomalies during the extended winter from the 1° ? 1° objectively analyzed air?sea fluxes (OAFlux) dataset. Though the model is constructed from 1-week lag statistics, it successfully reproduces the observed anomaly evolution through lead times of 90 days, allowing an estimation of the relative roles of coupling and internal atmospheric and oceanic forcing upon North Pacific SSTs. It is found that east of the date line, SST variability is maintained by, but has little effect on, TA variability. However, in the Kuroshio?Oyashio confluence and extension region, about half of the SST variability is independent of TA, driven instead by SST noise forcing internal to the ocean. Including surface zonal winds in the analysis does not alter this conclusion, suggesting TA adequately represents the atmosphere. Repeating the analysis with the output of two control simulations from a fully coupled global climate model (GCM) differing only in their ocean resolution yields qualitatively similar results. However, for the simulation employing the coarse-resolution (1°) ocean model, all SST variability depends upon TA, apparently caused by a near absence of ocean-induced noise forcing. Collectively, these results imply that a strong contribution from internal oceanic forcing drives SST variability in the Kuroshio?Oyashio region, which may be used as a justification for atmospheric GCM experiments forced with SST anomalies in that region alone. This conclusion is unaffected by increasing the dimensionality of the model to allow for intrabasin interaction.
    • Download: (2.119Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigating the Role of Ocean–Atmosphere Coupling in the North Pacific Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222823
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSmirnov, Dimitry
    contributor authorNewman, Matthew
    contributor authorAlexander, Michael A.
    date accessioned2017-06-09T17:08:21Z
    date available2017-06-09T17:08:21Z
    date copyright2014/01/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79983.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222823
    description abstractir?sea interaction over the North Pacific is diagnosed using a simple, local coupled autoregressive model constructed from observed 7-day running-mean sea surface temperature (SST) and 2-m air temperature TA anomalies during the extended winter from the 1° ? 1° objectively analyzed air?sea fluxes (OAFlux) dataset. Though the model is constructed from 1-week lag statistics, it successfully reproduces the observed anomaly evolution through lead times of 90 days, allowing an estimation of the relative roles of coupling and internal atmospheric and oceanic forcing upon North Pacific SSTs. It is found that east of the date line, SST variability is maintained by, but has little effect on, TA variability. However, in the Kuroshio?Oyashio confluence and extension region, about half of the SST variability is independent of TA, driven instead by SST noise forcing internal to the ocean. Including surface zonal winds in the analysis does not alter this conclusion, suggesting TA adequately represents the atmosphere. Repeating the analysis with the output of two control simulations from a fully coupled global climate model (GCM) differing only in their ocean resolution yields qualitatively similar results. However, for the simulation employing the coarse-resolution (1°) ocean model, all SST variability depends upon TA, apparently caused by a near absence of ocean-induced noise forcing. Collectively, these results imply that a strong contribution from internal oceanic forcing drives SST variability in the Kuroshio?Oyashio region, which may be used as a justification for atmospheric GCM experiments forced with SST anomalies in that region alone. This conclusion is unaffected by increasing the dimensionality of the model to allow for intrabasin interaction.
    publisherAmerican Meteorological Society
    titleInvestigating the Role of Ocean–Atmosphere Coupling in the North Pacific Ocean
    typeJournal Paper
    journal volume27
    journal issue2
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00123.1
    journal fristpage592
    journal lastpage606
    treeJournal of Climate:;2013:;volume( 027 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian