YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Downscaling of GCM-Simulated Precipitation Using Model Output Statistics

    Source: Journal of Climate:;2013:;volume( 027 ):;issue: 001::page 312
    Author:
    Eden, Jonathan M.
    ,
    Widmann, Martin
    DOI: 10.1175/JCLI-D-13-00063.1
    Publisher: American Meteorological Society
    Abstract: roducing reliable estimates of changes in precipitation at local and regional scales remains an important challenge in climate science. Statistical downscaling methods are often utilized to bridge the gap between the coarse resolution of general circulation models (GCMs) and the higher resolutions at which information is required by end users. As the skill of GCM precipitation, particularly in simulating temporal variability, is not fully understood, statistical downscaling typically adopts a perfect prognosis (PP) approach in which high-resolution precipitation projections are based on real-world statistical relationships between large-scale atmospheric predictors and local-scale precipitation. Using a nudged simulation of the ECHAM5 GCM, in which the large-scale weather states are forced toward observations of large-scale circulation and temperature for the period 1958?2001, previous work has shown ECHAM5 skill in simulating temporal variability of precipitation to be high in many parts of the world. Here, the same nudged simulation is used in an alternative downscaling approach, based on model output statistics (MOS), in which statistical corrections are derived for simulated precipitation. Cross-validated MOS corrections based on maximum covariance analysis (MCA) and principal component regression (PCR), in addition to a simple local scaling, are shown to perform strongly throughout much of the extratropics. Correlation between downscaled and observed monthly-mean precipitation is as high as 0.8?0.9 in many parts of Europe, North America, and Australia. For these regions, MOS clearly outperforms PP methods that use temperature and circulation as predictors. The strong performance of MOS makes such an approach to downscaling attractive and potentially applicable to climate change simulations.
    • Download: (2.838Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Downscaling of GCM-Simulated Precipitation Using Model Output Statistics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222780
    Collections
    • Journal of Climate

    Show full item record

    contributor authorEden, Jonathan M.
    contributor authorWidmann, Martin
    date accessioned2017-06-09T17:08:12Z
    date available2017-06-09T17:08:12Z
    date copyright2014/01/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79944.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222780
    description abstractroducing reliable estimates of changes in precipitation at local and regional scales remains an important challenge in climate science. Statistical downscaling methods are often utilized to bridge the gap between the coarse resolution of general circulation models (GCMs) and the higher resolutions at which information is required by end users. As the skill of GCM precipitation, particularly in simulating temporal variability, is not fully understood, statistical downscaling typically adopts a perfect prognosis (PP) approach in which high-resolution precipitation projections are based on real-world statistical relationships between large-scale atmospheric predictors and local-scale precipitation. Using a nudged simulation of the ECHAM5 GCM, in which the large-scale weather states are forced toward observations of large-scale circulation and temperature for the period 1958?2001, previous work has shown ECHAM5 skill in simulating temporal variability of precipitation to be high in many parts of the world. Here, the same nudged simulation is used in an alternative downscaling approach, based on model output statistics (MOS), in which statistical corrections are derived for simulated precipitation. Cross-validated MOS corrections based on maximum covariance analysis (MCA) and principal component regression (PCR), in addition to a simple local scaling, are shown to perform strongly throughout much of the extratropics. Correlation between downscaled and observed monthly-mean precipitation is as high as 0.8?0.9 in many parts of Europe, North America, and Australia. For these regions, MOS clearly outperforms PP methods that use temperature and circulation as predictors. The strong performance of MOS makes such an approach to downscaling attractive and potentially applicable to climate change simulations.
    publisherAmerican Meteorological Society
    titleDownscaling of GCM-Simulated Precipitation Using Model Output Statistics
    typeJournal Paper
    journal volume27
    journal issue1
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-13-00063.1
    journal fristpage312
    journal lastpage324
    treeJournal of Climate:;2013:;volume( 027 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian