YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    If Anthropogenic CO2 Emissions Cease, Will Atmospheric CO2 Concentration Continue to Increase?

    Source: Journal of Climate:;2013:;volume( 026 ):;issue: 023::page 9563
    Author:
    MacDougall, Andrew H.
    ,
    Eby, Michael
    ,
    Weaver, Andrew J.
    DOI: 10.1175/JCLI-D-12-00751.1
    Publisher: American Meteorological Society
    Abstract: f anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that the overall carbon sinks dominate, such that upon the cessation of anthropogenic emissions, atmospheric CO2 levels decrease over time. However, these models have typically neglected the permafrost carbon pool, which has the potential to introduce an additional terrestrial source of carbon to the atmosphere. Here, the authors use the University of Victoria Earth System Climate Model (UVic ESCM), which has recently been expanded to include permafrost carbon stocks and exchanges with the atmosphere. In a scenario of zeroed CO2 and sulfate aerosol emissions, whether the warming induced by specified constant concentrations of non-CO2 greenhouse gases could slow the CO2 decline following zero emissions or even reverse this trend and cause CO2 to increase over time is assessed. It is found that a radiative forcing from non-CO2 gases of approximately 0.6 W m?2 results in a near balance of CO2 emissions from the terrestrial biosphere and uptake of CO2 by the oceans, resulting in near-constant atmospheric CO2 concentrations for at least a century after emissions are eliminated. At higher values of non-CO2 radiative forcing, CO2 concentrations increase over time, regardless of when emissions cease during the twenty-first century. Given that the present-day radiative forcing from non-CO2 greenhouse gases is about 0.95 W m?2, the results suggest that if all CO2 and aerosols emissions were eliminated without also decreasing non-CO2 greenhouse gas emissions CO2 levels would increase over time, resulting in a small increase in climate warming associated with this positive permafrost?carbon feedback.
    • Download: (1.349Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      If Anthropogenic CO2 Emissions Cease, Will Atmospheric CO2 Concentration Continue to Increase?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222665
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMacDougall, Andrew H.
    contributor authorEby, Michael
    contributor authorWeaver, Andrew J.
    date accessioned2017-06-09T17:07:51Z
    date available2017-06-09T17:07:51Z
    date copyright2013/12/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79841.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222665
    description abstractf anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that the overall carbon sinks dominate, such that upon the cessation of anthropogenic emissions, atmospheric CO2 levels decrease over time. However, these models have typically neglected the permafrost carbon pool, which has the potential to introduce an additional terrestrial source of carbon to the atmosphere. Here, the authors use the University of Victoria Earth System Climate Model (UVic ESCM), which has recently been expanded to include permafrost carbon stocks and exchanges with the atmosphere. In a scenario of zeroed CO2 and sulfate aerosol emissions, whether the warming induced by specified constant concentrations of non-CO2 greenhouse gases could slow the CO2 decline following zero emissions or even reverse this trend and cause CO2 to increase over time is assessed. It is found that a radiative forcing from non-CO2 gases of approximately 0.6 W m?2 results in a near balance of CO2 emissions from the terrestrial biosphere and uptake of CO2 by the oceans, resulting in near-constant atmospheric CO2 concentrations for at least a century after emissions are eliminated. At higher values of non-CO2 radiative forcing, CO2 concentrations increase over time, regardless of when emissions cease during the twenty-first century. Given that the present-day radiative forcing from non-CO2 greenhouse gases is about 0.95 W m?2, the results suggest that if all CO2 and aerosols emissions were eliminated without also decreasing non-CO2 greenhouse gas emissions CO2 levels would increase over time, resulting in a small increase in climate warming associated with this positive permafrost?carbon feedback.
    publisherAmerican Meteorological Society
    titleIf Anthropogenic CO2 Emissions Cease, Will Atmospheric CO2 Concentration Continue to Increase?
    typeJournal Paper
    journal volume26
    journal issue23
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00751.1
    journal fristpage9563
    journal lastpage9576
    treeJournal of Climate:;2013:;volume( 026 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian