YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Observational Evidence That Enhanced Subsidence Reduces Subtropical Marine Boundary Layer Cloudiness

    Source: Journal of Climate:;2013:;volume( 026 ):;issue: 019::page 7507
    Author:
    Myers, Timothy A.
    ,
    Norris, Joel R.
    DOI: 10.1175/JCLI-D-12-00736.1
    Publisher: American Meteorological Society
    Abstract: onventional wisdom suggests that subsidence favors the presence of marine stratus and stratocumulus because regions of enhanced boundary layer cloudiness are observed to climatologically co-occur with regions of enhanced subsidence. Here it is argued that the climatological positive correlation between subsidence and cloudiness is not the result of a direct physical mechanism connecting the two. Instead, it arises because enhanced subsidence is typically associated with stronger temperature inversions capping the marine boundary layer, and stronger temperature inversions favor greater cloudiness. Through statistical analysis of satellite cloud data and meteorological reanalyses for the subsidence regime over tropical (30°S?30°N) oceans, it is shown that enhanced subsidence promotes reduced cloudiness for the same value of inversion strength and that a stronger inversion favors greater cloudiness for the same value of subsidence. Using a simple conceptual model, it is argued that enhanced subsidence leads to reduced cloud thickness, liquid water path, and cloud fraction by pushing down the top of the marine boundary layer. Moreover, a stronger inversion reduces entrainment drying and warming, thus leading to a more humid boundary layer and greater cloud thickness, liquid water path, and cloud fraction. These two mechanisms typically oppose each other for geographical and seasonal cloud variability because enhanced subsidence is usually associated with stronger inversions. If global warming results in stronger inversions but weaker subsidence, the two mechanisms could both favor increased subtropical low-level cloudiness.
    • Download: (1.788Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Observational Evidence That Enhanced Subsidence Reduces Subtropical Marine Boundary Layer Cloudiness

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222659
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMyers, Timothy A.
    contributor authorNorris, Joel R.
    date accessioned2017-06-09T17:07:50Z
    date available2017-06-09T17:07:50Z
    date copyright2013/10/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79835.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222659
    description abstractonventional wisdom suggests that subsidence favors the presence of marine stratus and stratocumulus because regions of enhanced boundary layer cloudiness are observed to climatologically co-occur with regions of enhanced subsidence. Here it is argued that the climatological positive correlation between subsidence and cloudiness is not the result of a direct physical mechanism connecting the two. Instead, it arises because enhanced subsidence is typically associated with stronger temperature inversions capping the marine boundary layer, and stronger temperature inversions favor greater cloudiness. Through statistical analysis of satellite cloud data and meteorological reanalyses for the subsidence regime over tropical (30°S?30°N) oceans, it is shown that enhanced subsidence promotes reduced cloudiness for the same value of inversion strength and that a stronger inversion favors greater cloudiness for the same value of subsidence. Using a simple conceptual model, it is argued that enhanced subsidence leads to reduced cloud thickness, liquid water path, and cloud fraction by pushing down the top of the marine boundary layer. Moreover, a stronger inversion reduces entrainment drying and warming, thus leading to a more humid boundary layer and greater cloud thickness, liquid water path, and cloud fraction. These two mechanisms typically oppose each other for geographical and seasonal cloud variability because enhanced subsidence is usually associated with stronger inversions. If global warming results in stronger inversions but weaker subsidence, the two mechanisms could both favor increased subtropical low-level cloudiness.
    publisherAmerican Meteorological Society
    titleObservational Evidence That Enhanced Subsidence Reduces Subtropical Marine Boundary Layer Cloudiness
    typeJournal Paper
    journal volume26
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00736.1
    journal fristpage7507
    journal lastpage7524
    treeJournal of Climate:;2013:;volume( 026 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian