YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Seasonal Effects of ENSO on Atmospheric Conditions Associated with European Precipitation: Model Simulations of Seasonal Teleconnections

    Source: Journal of Climate:;2013:;volume( 027 ):;issue: 003::page 1010
    Author:
    Shaman, Jeffrey
    DOI: 10.1175/JCLI-D-12-00734.1
    Publisher: American Meteorological Society
    Abstract: he seasonal upper-tropospheric teleconnection between ENSO and the North Atlantic/European sector is explored through a series of model experiments. A barotropic vorticity equation model is linearized about climatological conditions for each season of the year, and divergence forcing is applied over the equatorial Pacific to mimic El Niño?related convective activity. During boreal fall, winter, and spring, this forcing similarly excites a northeastward-propagating stationary barotropic Rossby wave train that extends across the North Atlantic to the European coast. Strong anomalies develop over the British Isles in the vicinity of the North Atlantic jet exit. Solutions during boreal summer produce no clear wave train; however, evidence exists for a North Atlantic response because of both eastward- and westward-propagating signals. These direct responses over the Atlantic and Europe are qualitatively similar to observed ENSO-associated anomalies during boreal spring and fall, but differ structurally during summer and winter. Further experiments with the vorticity equation model using full Rossby wave source forcing, which included vorticity advection, increase the amplitude of the response over Europe during some seasons; however, structural differences persist.Finally, experiments with the Community Atmosphere Model (CAM), version 4, reveal that the basic northeastward-propagating response is modulated by downstream feedbacks. These changes are most profound during boreal winter and engender an arching wave train pattern that, matching observations, reflects off the jet over North America, propagates southeastward over the North Atlantic, and fails to reach the European coast. Overall, the simulations with CAM correctly depict observed seasonal changes in the magnitude of the ENSO?North Atlantic/European teleconnection by producing a strong fall and winter response but a weaker spring and summer response. The CAM experiments also indicate that the seasonal response is not dependent on antecedent conditions; however, CAM simulations fail to project the upper-tropospheric anomalies appropriately to the lower troposphere.
    • Download: (4.271Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Seasonal Effects of ENSO on Atmospheric Conditions Associated with European Precipitation: Model Simulations of Seasonal Teleconnections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222658
    Collections
    • Journal of Climate

    Show full item record

    contributor authorShaman, Jeffrey
    date accessioned2017-06-09T17:07:50Z
    date available2017-06-09T17:07:50Z
    date copyright2014/02/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79834.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222658
    description abstracthe seasonal upper-tropospheric teleconnection between ENSO and the North Atlantic/European sector is explored through a series of model experiments. A barotropic vorticity equation model is linearized about climatological conditions for each season of the year, and divergence forcing is applied over the equatorial Pacific to mimic El Niño?related convective activity. During boreal fall, winter, and spring, this forcing similarly excites a northeastward-propagating stationary barotropic Rossby wave train that extends across the North Atlantic to the European coast. Strong anomalies develop over the British Isles in the vicinity of the North Atlantic jet exit. Solutions during boreal summer produce no clear wave train; however, evidence exists for a North Atlantic response because of both eastward- and westward-propagating signals. These direct responses over the Atlantic and Europe are qualitatively similar to observed ENSO-associated anomalies during boreal spring and fall, but differ structurally during summer and winter. Further experiments with the vorticity equation model using full Rossby wave source forcing, which included vorticity advection, increase the amplitude of the response over Europe during some seasons; however, structural differences persist.Finally, experiments with the Community Atmosphere Model (CAM), version 4, reveal that the basic northeastward-propagating response is modulated by downstream feedbacks. These changes are most profound during boreal winter and engender an arching wave train pattern that, matching observations, reflects off the jet over North America, propagates southeastward over the North Atlantic, and fails to reach the European coast. Overall, the simulations with CAM correctly depict observed seasonal changes in the magnitude of the ENSO?North Atlantic/European teleconnection by producing a strong fall and winter response but a weaker spring and summer response. The CAM experiments also indicate that the seasonal response is not dependent on antecedent conditions; however, CAM simulations fail to project the upper-tropospheric anomalies appropriately to the lower troposphere.
    publisherAmerican Meteorological Society
    titleThe Seasonal Effects of ENSO on Atmospheric Conditions Associated with European Precipitation: Model Simulations of Seasonal Teleconnections
    typeJournal Paper
    journal volume27
    journal issue3
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00734.1
    journal fristpage1010
    journal lastpage1028
    treeJournal of Climate:;2013:;volume( 027 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian