YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regional Interdependency of Precipitation Indices across Denmark in Two Ensembles of High-Resolution RCMs

    Source: Journal of Climate:;2013:;volume( 026 ):;issue: 020::page 7912
    Author:
    Sunyer, Maria Antonia
    ,
    Madsen, Henrik
    ,
    Rosbjerg, Dan
    ,
    Arnbjerg-Nielsen, Karsten
    DOI: 10.1175/JCLI-D-12-00707.1
    Publisher: American Meteorological Society
    Abstract: utputs from climate models are the primary data source in climate change impact studies. However, their interpretation is not straightforward. In recent years, several methods have been developed in order to quantify the uncertainty in climate projections. One of the common assumptions in almost all these methods is that the climate models are independent. This study addresses the validity of this assumption for two ensembles of regional climate models (RCMs) from the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) project based on the land cells covering Denmark. Daily precipitation indices from an ensemble of RCMs driven by the 40-yr ECMWF Re-Analysis (ERA-40) and an ensemble of the same RCMs driven by different general circulation models (GCMs) are analyzed. Two different methods are used to estimate the amount of independent information in the ensembles. These are based on different statistical properties of a measure of climate model error. Additionally, a hierarchical cluster analysis is carried out. Regardless of the method used, the effective number of RCMs is smaller than the total number of RCMs. The estimated effective number of RCMs varies depending on the method and precipitation index considered. The results also show that the main cause of interdependency in the ensemble is the use of the same RCM driven by different GCMs. This study shows that the precipitation outputs from the RCMs in the ENSEMBLES project cannot be considered independent. If the interdependency between RCMs is not taken into account, the uncertainty in the RCM simulations of current regional climate may be underestimated. This will in turn lead to an underestimation of the uncertainty in future precipitation projections.
    • Download: (1.425Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regional Interdependency of Precipitation Indices across Denmark in Two Ensembles of High-Resolution RCMs

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222638
    Collections
    • Journal of Climate

    Show full item record

    contributor authorSunyer, Maria Antonia
    contributor authorMadsen, Henrik
    contributor authorRosbjerg, Dan
    contributor authorArnbjerg-Nielsen, Karsten
    date accessioned2017-06-09T17:07:45Z
    date available2017-06-09T17:07:45Z
    date copyright2013/10/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79816.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222638
    description abstractutputs from climate models are the primary data source in climate change impact studies. However, their interpretation is not straightforward. In recent years, several methods have been developed in order to quantify the uncertainty in climate projections. One of the common assumptions in almost all these methods is that the climate models are independent. This study addresses the validity of this assumption for two ensembles of regional climate models (RCMs) from the Ensemble-Based Predictions of Climate Changes and their Impacts (ENSEMBLES) project based on the land cells covering Denmark. Daily precipitation indices from an ensemble of RCMs driven by the 40-yr ECMWF Re-Analysis (ERA-40) and an ensemble of the same RCMs driven by different general circulation models (GCMs) are analyzed. Two different methods are used to estimate the amount of independent information in the ensembles. These are based on different statistical properties of a measure of climate model error. Additionally, a hierarchical cluster analysis is carried out. Regardless of the method used, the effective number of RCMs is smaller than the total number of RCMs. The estimated effective number of RCMs varies depending on the method and precipitation index considered. The results also show that the main cause of interdependency in the ensemble is the use of the same RCM driven by different GCMs. This study shows that the precipitation outputs from the RCMs in the ENSEMBLES project cannot be considered independent. If the interdependency between RCMs is not taken into account, the uncertainty in the RCM simulations of current regional climate may be underestimated. This will in turn lead to an underestimation of the uncertainty in future precipitation projections.
    publisherAmerican Meteorological Society
    titleRegional Interdependency of Precipitation Indices across Denmark in Two Ensembles of High-Resolution RCMs
    typeJournal Paper
    journal volume26
    journal issue20
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00707.1
    journal fristpage7912
    journal lastpage7928
    treeJournal of Climate:;2013:;volume( 026 ):;issue: 020
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian