YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Tibetan Plateau Summer Monsoon in the CMIP5 Simulations

    Source: Journal of Climate:;2013:;volume( 026 ):;issue: 019::page 7747
    Author:
    Duan, Anmin
    ,
    Hu, Jun
    ,
    Xiao, Zhixiang
    DOI: 10.1175/JCLI-D-12-00685.1
    Publisher: American Meteorological Society
    Abstract: emporal variability within the Tibetan Plateau summer monsoon (TPSM) is closely linked to both the East and South Asian summer monsoons over several time scales but has received much less attention than these other systems. In this study, extensive integrations under phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical scenarios from 15 coupled general circulation models (CGCMs) and Atmospheric Model Intercomparison Project (AMIP) runs from eight atmospheric general circulation models (AGCMs) are used to evaluate the performance of these GCMs. Results indicate that all GCMs are able to simulate the climate mean TPSM circulation system. However, the large bias associated with precipitation intensity and patterns remains, despite the higher resolution and inclusion of the indirect effects of sulfate aerosol that have helped to improve the skill of the models to simulate the annual cycle of precipitation in both AGCMs and CGCMs. The interannual variability of the surface heat low and the Tibetan high in most of the AGCMs resembles the observation reasonably because of the prescribed forcing fields. However, only a few models were able to reproduce the observed seesaw pattern associated with the interannual variability of the TPSM and the East Asian summer monsoon (EASM). Regarding long-term trends, most models overestimated the amplitude of the tropospheric warming and the declining trend in the surface heat low between 1979 and 2005. In addition, the observed cooling trend in the upper troposphere and the decline of the Tibetan high were not reproduced by most models. Therefore, there is still significant scope for improving GCM simulations of regional climate change, especially in regions near extensive mountain ranges.
    • Download: (3.551Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Tibetan Plateau Summer Monsoon in the CMIP5 Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222624
    Collections
    • Journal of Climate

    Show full item record

    contributor authorDuan, Anmin
    contributor authorHu, Jun
    contributor authorXiao, Zhixiang
    date accessioned2017-06-09T17:07:42Z
    date available2017-06-09T17:07:42Z
    date copyright2013/10/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79803.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222624
    description abstractemporal variability within the Tibetan Plateau summer monsoon (TPSM) is closely linked to both the East and South Asian summer monsoons over several time scales but has received much less attention than these other systems. In this study, extensive integrations under phase 5 of the Coupled Model Intercomparison Project (CMIP5) historical scenarios from 15 coupled general circulation models (CGCMs) and Atmospheric Model Intercomparison Project (AMIP) runs from eight atmospheric general circulation models (AGCMs) are used to evaluate the performance of these GCMs. Results indicate that all GCMs are able to simulate the climate mean TPSM circulation system. However, the large bias associated with precipitation intensity and patterns remains, despite the higher resolution and inclusion of the indirect effects of sulfate aerosol that have helped to improve the skill of the models to simulate the annual cycle of precipitation in both AGCMs and CGCMs. The interannual variability of the surface heat low and the Tibetan high in most of the AGCMs resembles the observation reasonably because of the prescribed forcing fields. However, only a few models were able to reproduce the observed seesaw pattern associated with the interannual variability of the TPSM and the East Asian summer monsoon (EASM). Regarding long-term trends, most models overestimated the amplitude of the tropospheric warming and the declining trend in the surface heat low between 1979 and 2005. In addition, the observed cooling trend in the upper troposphere and the decline of the Tibetan high were not reproduced by most models. Therefore, there is still significant scope for improving GCM simulations of regional climate change, especially in regions near extensive mountain ranges.
    publisherAmerican Meteorological Society
    titleThe Tibetan Plateau Summer Monsoon in the CMIP5 Simulations
    typeJournal Paper
    journal volume26
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00685.1
    journal fristpage7747
    journal lastpage7766
    treeJournal of Climate:;2013:;volume( 026 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian