YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Generation Mechanism of the South Pacific Subtropical Dipole

    Source: Journal of Climate:;2013:;volume( 026 ):;issue: 016::page 6033
    Author:
    Morioka, Yushi
    ,
    Ratnam, J. V.
    ,
    Sasaki, Wataru
    ,
    Masumoto, Yukio
    DOI: 10.1175/JCLI-D-12-00648.1
    Publisher: American Meteorological Society
    Abstract: istinct pattern of interannual variability in sea surface temperature (SST) in the South Pacific [i.e., the South Pacific subtropical dipole (SPSD)] is examined using outputs from a coupled general circulation model. The SPSD appears as the second empirical orthogonal function (EOF) mode of the SST anomalies in the South Pacific and is associated with a northeast?southwest-oriented dipole of positive and negative SST anomalies in the central basin. The positive and negative SST anomaly poles start to develop during austral spring, reach their peak during austral summer, and gradually decay afterward. Close examination of mixed-layer heat balance yields that the SST anomaly poles develop mainly because warming of the mixed layer by shortwave radiation is modulated by the anomalous mixed-layer thickness. Over the positive (negative) pole, the mixed layer becomes thinner (thicker) than normal and acts to enhance (reduce) the warming of the mixed layer by climatological shortwave radiation. This thinner (thicker) mixed layer may be related to the suppressed (enhanced) evaporation associated with the overlying sea level pressure (SLP) anomalies. Weaker-than-normal surface wind also contributes to the thinner mixed layer in the case of the positive pole. Furthermore, the SLP anomalies are linked with the geopotential height anomalies in the upper troposphere and are associated with a stationary Rossby wave pattern along the westerly jet in the midlatitudes. This suggests that the SLP anomalies that generate the SPSD are not locally excited but remotely induced signals.
    • Download: (2.756Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Generation Mechanism of the South Pacific Subtropical Dipole

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222598
    Collections
    • Journal of Climate

    Show full item record

    contributor authorMorioka, Yushi
    contributor authorRatnam, J. V.
    contributor authorSasaki, Wataru
    contributor authorMasumoto, Yukio
    date accessioned2017-06-09T17:07:38Z
    date available2017-06-09T17:07:38Z
    date copyright2013/08/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79781.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222598
    description abstractistinct pattern of interannual variability in sea surface temperature (SST) in the South Pacific [i.e., the South Pacific subtropical dipole (SPSD)] is examined using outputs from a coupled general circulation model. The SPSD appears as the second empirical orthogonal function (EOF) mode of the SST anomalies in the South Pacific and is associated with a northeast?southwest-oriented dipole of positive and negative SST anomalies in the central basin. The positive and negative SST anomaly poles start to develop during austral spring, reach their peak during austral summer, and gradually decay afterward. Close examination of mixed-layer heat balance yields that the SST anomaly poles develop mainly because warming of the mixed layer by shortwave radiation is modulated by the anomalous mixed-layer thickness. Over the positive (negative) pole, the mixed layer becomes thinner (thicker) than normal and acts to enhance (reduce) the warming of the mixed layer by climatological shortwave radiation. This thinner (thicker) mixed layer may be related to the suppressed (enhanced) evaporation associated with the overlying sea level pressure (SLP) anomalies. Weaker-than-normal surface wind also contributes to the thinner mixed layer in the case of the positive pole. Furthermore, the SLP anomalies are linked with the geopotential height anomalies in the upper troposphere and are associated with a stationary Rossby wave pattern along the westerly jet in the midlatitudes. This suggests that the SLP anomalies that generate the SPSD are not locally excited but remotely induced signals.
    publisherAmerican Meteorological Society
    titleGeneration Mechanism of the South Pacific Subtropical Dipole
    typeJournal Paper
    journal volume26
    journal issue16
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00648.1
    journal fristpage6033
    journal lastpage6045
    treeJournal of Climate:;2013:;volume( 026 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian