YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison

    Source: Journal of Climate:;2013:;volume( 026 ):;issue: 016::page 5782
    Author:
    Zickfeld, Kirsten
    ,
    Eby, Michael
    ,
    Weaver, Andrew J.
    ,
    Alexander, Kaitlin
    ,
    Crespin, Elisabeth
    ,
    Edwards, Neil R.
    ,
    Eliseev, Alexey V.
    ,
    Feulner, Georg
    ,
    Fichefet, Thierry
    ,
    Forest, Chris E.
    ,
    Friedlingstein, Pierre
    ,
    Goosse, Hugues
    ,
    Holden, Philip B.
    ,
    Joos, Fortunat
    ,
    Kawamiya, Michio
    ,
    Kicklighter, David
    ,
    Kienert, Hendrik
    ,
    Matsumoto, Katsumi
    ,
    Mokhov, Igor I.
    ,
    Monier, Erwan
    ,
    Olsen, Steffen M.
    ,
    Pedersen, Jens O. P.
    ,
    Perrette, Mahe
    ,
    Philippon-Berthier, Gwenaëlle
    ,
    Ridgwell, Andy
    ,
    Schlosser, Adam
    ,
    Schneider Von Deimling, Thomas
    ,
    Shaffer, Gary
    ,
    Sokolov, Andrei
    ,
    Spahni, Renato
    ,
    Steinacher, Marco
    ,
    Tachiiri, Kaoru
    ,
    Tokos, Kathy S.
    ,
    Yoshimori, Masakazu
    ,
    Zeng, Ning
    ,
    Zhao, Fang
    DOI: 10.1175/JCLI-D-12-00584.1
    Publisher: American Meteorological Society
    Abstract: his paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6?6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5?8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100?1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.
    • Download: (5.715Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222552
    Collections
    • Journal of Climate

    Show full item record

    contributor authorZickfeld, Kirsten
    contributor authorEby, Michael
    contributor authorWeaver, Andrew J.
    contributor authorAlexander, Kaitlin
    contributor authorCrespin, Elisabeth
    contributor authorEdwards, Neil R.
    contributor authorEliseev, Alexey V.
    contributor authorFeulner, Georg
    contributor authorFichefet, Thierry
    contributor authorForest, Chris E.
    contributor authorFriedlingstein, Pierre
    contributor authorGoosse, Hugues
    contributor authorHolden, Philip B.
    contributor authorJoos, Fortunat
    contributor authorKawamiya, Michio
    contributor authorKicklighter, David
    contributor authorKienert, Hendrik
    contributor authorMatsumoto, Katsumi
    contributor authorMokhov, Igor I.
    contributor authorMonier, Erwan
    contributor authorOlsen, Steffen M.
    contributor authorPedersen, Jens O. P.
    contributor authorPerrette, Mahe
    contributor authorPhilippon-Berthier, Gwenaëlle
    contributor authorRidgwell, Andy
    contributor authorSchlosser, Adam
    contributor authorSchneider Von Deimling, Thomas
    contributor authorShaffer, Gary
    contributor authorSokolov, Andrei
    contributor authorSpahni, Renato
    contributor authorSteinacher, Marco
    contributor authorTachiiri, Kaoru
    contributor authorTokos, Kathy S.
    contributor authorYoshimori, Masakazu
    contributor authorZeng, Ning
    contributor authorZhao, Fang
    date accessioned2017-06-09T17:07:26Z
    date available2017-06-09T17:07:26Z
    date copyright2013/08/01
    date issued2013
    identifier issn0894-8755
    identifier otherams-79739.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222552
    description abstracthis paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. Most EMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6?6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs for RCPs 4.5?8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination of CO2 emissions in all EMICs. Restoration of atmospheric CO2 from RCP to preindustrial levels over 100?1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2.
    publisherAmerican Meteorological Society
    titleLong-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison
    typeJournal Paper
    journal volume26
    journal issue16
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00584.1
    journal fristpage5782
    journal lastpage5809
    treeJournal of Climate:;2013:;volume( 026 ):;issue: 016
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian