YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Robustness of Emergent Constraints Used in Multimodel Climate Change Projections of Arctic Warming

    Source: Journal of Climate:;2012:;volume( 026 ):;issue: 002::page 669
    Author:
    Bracegirdle, Thomas J.
    ,
    Stephenson, David B.
    DOI: 10.1175/JCLI-D-12-00537.1
    Publisher: American Meteorological Society
    Abstract: tatistical relationships between future and historical model runs in multimodel ensembles (MMEs) are increasingly exploited to make more constrained projections of climate change. However, such emergent constraints may be spurious and can arise because of shared (common) errors in a particular MME or because of overly influential models. This study assesses the robustness of emergent constraints used for Arctic warming by comparison of such constraints in ensembles generated by the two most recent Coupled Model Intercomparison Project (CMIP) experiments: CMIP3 and CMIP5. An ensemble regression approach is used to estimate emergent constraints in Arctic wintertime surface air temperature change over the twenty-first century under the Special Report on Emission Scenarios (SRES) A1B scenario in CMIP3 and the Representative Concentration Pathway (RCP) 4.5 scenario in CMIP5. To take account of different scenarios, this study focuses on polar amplification by using temperature responses at each grid point that are scaled by the global mean temperature response for each climate model. In most locations, the estimated emergent constraints are reassuringly similar in CMIP3 and CMIP5 and differences could have easily arisen from sampling variation. However, there is some indication that the emergent constraint and polar amplification is substantially larger in CMIP5 over the Sea of Okhotsk and the Bering Sea. Residual diagnostics identify one climate model in CMIP5 that has a notable influence on estimated emergent constraints over the Bering Sea and one in CMIP3 that that has a notable influence more widely along the sea ice edge and into midlatitudes over the western North Atlantic.
    • Download: (3.119Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Robustness of Emergent Constraints Used in Multimodel Climate Change Projections of Arctic Warming

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222507
    Collections
    • Journal of Climate

    Show full item record

    contributor authorBracegirdle, Thomas J.
    contributor authorStephenson, David B.
    date accessioned2017-06-09T17:07:17Z
    date available2017-06-09T17:07:17Z
    date copyright2013/01/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79699.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222507
    description abstracttatistical relationships between future and historical model runs in multimodel ensembles (MMEs) are increasingly exploited to make more constrained projections of climate change. However, such emergent constraints may be spurious and can arise because of shared (common) errors in a particular MME or because of overly influential models. This study assesses the robustness of emergent constraints used for Arctic warming by comparison of such constraints in ensembles generated by the two most recent Coupled Model Intercomparison Project (CMIP) experiments: CMIP3 and CMIP5. An ensemble regression approach is used to estimate emergent constraints in Arctic wintertime surface air temperature change over the twenty-first century under the Special Report on Emission Scenarios (SRES) A1B scenario in CMIP3 and the Representative Concentration Pathway (RCP) 4.5 scenario in CMIP5. To take account of different scenarios, this study focuses on polar amplification by using temperature responses at each grid point that are scaled by the global mean temperature response for each climate model. In most locations, the estimated emergent constraints are reassuringly similar in CMIP3 and CMIP5 and differences could have easily arisen from sampling variation. However, there is some indication that the emergent constraint and polar amplification is substantially larger in CMIP5 over the Sea of Okhotsk and the Bering Sea. Residual diagnostics identify one climate model in CMIP5 that has a notable influence on estimated emergent constraints over the Bering Sea and one in CMIP3 that that has a notable influence more widely along the sea ice edge and into midlatitudes over the western North Atlantic.
    publisherAmerican Meteorological Society
    titleOn the Robustness of Emergent Constraints Used in Multimodel Climate Change Projections of Arctic Warming
    typeJournal Paper
    journal volume26
    journal issue2
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00537.1
    journal fristpage669
    journal lastpage678
    treeJournal of Climate:;2012:;volume( 026 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian