YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Centennial Trend and Decadal-to-Interdecadal Variability of Atmospheric Angular Momentum in CMIP3 and CMIP5 Simulations

    Source: Journal of Climate:;2012:;volume( 026 ):;issue: 011::page 3846
    Author:
    Paek, Houk
    ,
    Huang, Huei-Ping
    DOI: 10.1175/JCLI-D-12-00515.1
    Publisher: American Meteorological Society
    Abstract: he climatology and trend of atmospheric angular momentum from the phase 3 and the phase 5 Climate Model Intercomparison Project (CMIP3 and CMIP5, respectively) simulations are diagnosed and validated with the Twentieth Century Reanalysis (20CR). It is found that CMIP5 models produced a significantly smaller bias in the twentieth-century climatology of the relative MR and omega MΩ angular momentum compared to CMIP3. The CMIP5 models also produced a narrower ensemble spread of the climatology and trend of MR and MΩ. Both CMIP3 and CMIP5 simulations consistently produced a positive trend in MR and MΩ for the twentieth and twenty-first centuries. The trend for the twenty-first century is much greater, reflecting the role of greenhouse gas (GHG) forcing in inducing the trend. The simulated increase in MR for the twentieth century is consistent with reanalysis. Both CMIP3 and CMIP5 models produced a wide range of magnitudes of decadal and interdecadal variability of MR compared to 20CR. The ratio of the simulated standard deviation of decadal or interdecadal variability to its observed counterpart ranges from 0.5 to over 2.0 for individual models. Nevertheless, the bias is largely random and ensemble averaging brings the ratio to within 18% of the reanalysis for decadal and interdecadal variability for both CMIP3 and CMIP5. The twenty-first-century simulations from both CMIP3 and CMIP5 produced only a small trend in the amplitude of decadal or interdecadal variability, which is not statistically significant. Thus, while GHG forcing induces a significant increase in the climatological mean of angular momentum, it does not significantly affect its decadal-to-interdecadal variability in the twenty-first century.
    • Download: (5.298Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Centennial Trend and Decadal-to-Interdecadal Variability of Atmospheric Angular Momentum in CMIP3 and CMIP5 Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222487
    Collections
    • Journal of Climate

    Show full item record

    contributor authorPaek, Houk
    contributor authorHuang, Huei-Ping
    date accessioned2017-06-09T17:07:14Z
    date available2017-06-09T17:07:14Z
    date copyright2013/06/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79681.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222487
    description abstracthe climatology and trend of atmospheric angular momentum from the phase 3 and the phase 5 Climate Model Intercomparison Project (CMIP3 and CMIP5, respectively) simulations are diagnosed and validated with the Twentieth Century Reanalysis (20CR). It is found that CMIP5 models produced a significantly smaller bias in the twentieth-century climatology of the relative MR and omega MΩ angular momentum compared to CMIP3. The CMIP5 models also produced a narrower ensemble spread of the climatology and trend of MR and MΩ. Both CMIP3 and CMIP5 simulations consistently produced a positive trend in MR and MΩ for the twentieth and twenty-first centuries. The trend for the twenty-first century is much greater, reflecting the role of greenhouse gas (GHG) forcing in inducing the trend. The simulated increase in MR for the twentieth century is consistent with reanalysis. Both CMIP3 and CMIP5 models produced a wide range of magnitudes of decadal and interdecadal variability of MR compared to 20CR. The ratio of the simulated standard deviation of decadal or interdecadal variability to its observed counterpart ranges from 0.5 to over 2.0 for individual models. Nevertheless, the bias is largely random and ensemble averaging brings the ratio to within 18% of the reanalysis for decadal and interdecadal variability for both CMIP3 and CMIP5. The twenty-first-century simulations from both CMIP3 and CMIP5 produced only a small trend in the amplitude of decadal or interdecadal variability, which is not statistically significant. Thus, while GHG forcing induces a significant increase in the climatological mean of angular momentum, it does not significantly affect its decadal-to-interdecadal variability in the twenty-first century.
    publisherAmerican Meteorological Society
    titleCentennial Trend and Decadal-to-Interdecadal Variability of Atmospheric Angular Momentum in CMIP3 and CMIP5 Simulations
    typeJournal Paper
    journal volume26
    journal issue11
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00515.1
    journal fristpage3846
    journal lastpage3864
    treeJournal of Climate:;2012:;volume( 026 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian