YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Twenty-First-Century Global-Mean Steric Sea Level Rise to Ocean Model Formulation

    Source: Journal of Climate:;2012:;volume( 026 ):;issue: 009::page 2947
    Author:
    Hallberg, Robert
    ,
    Adcroft, Alistair
    ,
    Dunne, John P.
    ,
    Krasting, John P.
    ,
    Stouffer, Ronald J.
    DOI: 10.1175/JCLI-D-12-00506.1
    Publisher: American Meteorological Society
    Abstract: wo comprehensive Earth system models (ESMs), identical apart from their oceanic components, are used to estimate the uncertainty in projections of twenty-first-century sea level rise due to representational choices in ocean physical formulation. Most prominent among the formulation differences is that one (ESM2M) uses a traditional z-coordinate ocean model, while the other (ESM2G) uses an isopycnal-coordinate ocean. As evidence of model fidelity, differences in twentieth-century global-mean steric sea level rise are not statistically significant between either model and observed trends. However, differences between the two models? twenty-first-century projections are systematic and both statistically and climatically significant. By 2100, ESM2M exhibits 18% higher global steric sea level rise than ESM2G for all four radiative forcing scenarios (28?49 mm higher), despite having similar changes between the models in the near-surface ocean for several scenarios. These differences arise primarily from the vertical extent over which heat is taken up and the total heat uptake by the models (9% more in ESM2M than ESM2G). The fact that the spun-up control state of ESM2M is warmer than ESM2G also contributes by giving thermal expansion coefficients that are about 7% larger in ESM2M than ESM2G. The differences between these models provide a direct estimate of the sensitivity of twenty-first-century sea level rise to ocean model formulation, and, given the span of these models across the observed volume of the ventilated thermocline, may also approximate the sensitivities expected from uncertainties in the characterization of interior ocean physical processes.
    • Download: (1.957Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Twenty-First-Century Global-Mean Steric Sea Level Rise to Ocean Model Formulation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222480
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHallberg, Robert
    contributor authorAdcroft, Alistair
    contributor authorDunne, John P.
    contributor authorKrasting, John P.
    contributor authorStouffer, Ronald J.
    date accessioned2017-06-09T17:07:12Z
    date available2017-06-09T17:07:12Z
    date copyright2013/05/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79674.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222480
    description abstractwo comprehensive Earth system models (ESMs), identical apart from their oceanic components, are used to estimate the uncertainty in projections of twenty-first-century sea level rise due to representational choices in ocean physical formulation. Most prominent among the formulation differences is that one (ESM2M) uses a traditional z-coordinate ocean model, while the other (ESM2G) uses an isopycnal-coordinate ocean. As evidence of model fidelity, differences in twentieth-century global-mean steric sea level rise are not statistically significant between either model and observed trends. However, differences between the two models? twenty-first-century projections are systematic and both statistically and climatically significant. By 2100, ESM2M exhibits 18% higher global steric sea level rise than ESM2G for all four radiative forcing scenarios (28?49 mm higher), despite having similar changes between the models in the near-surface ocean for several scenarios. These differences arise primarily from the vertical extent over which heat is taken up and the total heat uptake by the models (9% more in ESM2M than ESM2G). The fact that the spun-up control state of ESM2M is warmer than ESM2G also contributes by giving thermal expansion coefficients that are about 7% larger in ESM2M than ESM2G. The differences between these models provide a direct estimate of the sensitivity of twenty-first-century sea level rise to ocean model formulation, and, given the span of these models across the observed volume of the ventilated thermocline, may also approximate the sensitivities expected from uncertainties in the characterization of interior ocean physical processes.
    publisherAmerican Meteorological Society
    titleSensitivity of Twenty-First-Century Global-Mean Steric Sea Level Rise to Ocean Model Formulation
    typeJournal Paper
    journal volume26
    journal issue9
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00506.1
    journal fristpage2947
    journal lastpage2956
    treeJournal of Climate:;2012:;volume( 026 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian