YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation

    Source: Journal of Climate:;2012:;volume( 026 ):;issue: 005::page 1702
    Author:
    Huang, Yi
    DOI: 10.1175/JCLI-D-12-00438.1
    Publisher: American Meteorological Society
    Abstract: simulation experiment is conducted to inquire into the mean climate state and likely trends in atmospheric infrared radiation spectra. Upwelling and downwelling spectra at five vertical levels from the surface to the top of the atmosphere (TOA) are rigorously calculated from a climate-model-simulated atmosphere for a 25-yr period. Tracing the longwave radiation flux vertically and spectrally renders a dissection of the greenhouse effect of the earth atmosphere and its change due to climate forcings and feedbacks. The results show that the total outgoing longwave radiation (OLR) at the TOA may be conserved due to 1) compensating temperature and opacity effects and 2) contrasting temperature changes in troposphere and stratosphere. The tightly coupled tropospheric temperature and opacity effects reduce the overall tropospheric contribution to OLR change to be comparable to the overall stratospheric contribution, which suggests that transient OLR change is constrained by the relative strengths of stratospheric and tropospheric temperature changes.The total OLR energy, however, is redistributed across its spectrum. The earliest detectable global climate change signal lies in the CO2 absorption bands, which results from stratospheric cooling and the CO2 opacity effect. This signal can be detected much sooner than surface temperature change and is little affected by achievable instrument accuracy.In contrast, both tropospheric temperature and opacity effects increase downwelling longwave radiation (DLR), which makes DLR a verifiable aspect of global warming. The time it takes to detect surface DLR change roughly equals that of surface temperature change. Measuring downwelling radiances at strong water vapor lines at the tropopause can particularly help monitor stratospheric water vapor.
    • Download: (2.572Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222427
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHuang, Yi
    date accessioned2017-06-09T17:07:00Z
    date available2017-06-09T17:07:00Z
    date copyright2013/03/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79626.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222427
    description abstractsimulation experiment is conducted to inquire into the mean climate state and likely trends in atmospheric infrared radiation spectra. Upwelling and downwelling spectra at five vertical levels from the surface to the top of the atmosphere (TOA) are rigorously calculated from a climate-model-simulated atmosphere for a 25-yr period. Tracing the longwave radiation flux vertically and spectrally renders a dissection of the greenhouse effect of the earth atmosphere and its change due to climate forcings and feedbacks. The results show that the total outgoing longwave radiation (OLR) at the TOA may be conserved due to 1) compensating temperature and opacity effects and 2) contrasting temperature changes in troposphere and stratosphere. The tightly coupled tropospheric temperature and opacity effects reduce the overall tropospheric contribution to OLR change to be comparable to the overall stratospheric contribution, which suggests that transient OLR change is constrained by the relative strengths of stratospheric and tropospheric temperature changes.The total OLR energy, however, is redistributed across its spectrum. The earliest detectable global climate change signal lies in the CO2 absorption bands, which results from stratospheric cooling and the CO2 opacity effect. This signal can be detected much sooner than surface temperature change and is little affected by achievable instrument accuracy.In contrast, both tropospheric temperature and opacity effects increase downwelling longwave radiation (DLR), which makes DLR a verifiable aspect of global warming. The time it takes to detect surface DLR change roughly equals that of surface temperature change. Measuring downwelling radiances at strong water vapor lines at the tropopause can particularly help monitor stratospheric water vapor.
    publisherAmerican Meteorological Society
    titleA Simulated Climatology of Spectrally Decomposed Atmospheric Infrared Radiation
    typeJournal Paper
    journal volume26
    journal issue5
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00438.1
    journal fristpage1702
    journal lastpage1715
    treeJournal of Climate:;2012:;volume( 026 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian