YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets

    Source: Journal of Climate:;2012:;volume( 026 ):;issue: 010::page 3326
    Author:
    Boer, G. J.
    ,
    Arora, V. K.
    DOI: 10.1175/JCLI-D-12-00365.1
    Publisher: American Meteorological Society
    Abstract: missions of CO2 into the atmosphere affect the carbon budgets of the land and ocean as biogeochemical processes react to increased CO2 concentrations. Biogeochemical processes also react to changes in temperature and other climate parameters. This behavior is characterized in terms of carbon?concentration and carbon?climate feedback parameters. The results of this study include 1) the extension of the direct carbon feedback formalism of Boer and Arora to include results from radiatively coupled simulations, as well as those from the biogeochemically coupled and fully coupled simulations used in earlier analyses; 2) a brief analysis of the relationship between this formalism and the integrated feedback formalism of Friedlingstein et al.; 3) the feedback analysis of simulations based on each of the representative concentration pathways (RCPs) RCP2.6, RCP4.5, and RCP8.5; 4) a comparison of the effects of specifying atmospheric CO2 concentrations or CO2 emissions; and 5) the quantification of the relative importance of the two feedback mechanisms in terms of their cumulative contribution to the change in atmospheric CO2.Feedback results are broadly in agreement with earlier studies in that carbon?concentration feedback is negative for the atmosphere and carbon?climate feedback is positive. However, the magnitude and evolution of feedback behavior depends on the formalism employed, the scenario considered, and the specification of CO2 from emissions or as atmospheric concentrations. Both feedback parameters can differ by factors of two or more, depending on the scenario and on the specification of CO2 emissions or concentrations. While feedback results are qualitatively useful and illustrative of carbon budget behavior, they apply quantitatively to particular scenarios and cases.
    • Download: (2.064Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222374
    Collections
    • Journal of Climate

    Show full item record

    contributor authorBoer, G. J.
    contributor authorArora, V. K.
    date accessioned2017-06-09T17:06:49Z
    date available2017-06-09T17:06:49Z
    date copyright2013/05/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79579.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222374
    description abstractmissions of CO2 into the atmosphere affect the carbon budgets of the land and ocean as biogeochemical processes react to increased CO2 concentrations. Biogeochemical processes also react to changes in temperature and other climate parameters. This behavior is characterized in terms of carbon?concentration and carbon?climate feedback parameters. The results of this study include 1) the extension of the direct carbon feedback formalism of Boer and Arora to include results from radiatively coupled simulations, as well as those from the biogeochemically coupled and fully coupled simulations used in earlier analyses; 2) a brief analysis of the relationship between this formalism and the integrated feedback formalism of Friedlingstein et al.; 3) the feedback analysis of simulations based on each of the representative concentration pathways (RCPs) RCP2.6, RCP4.5, and RCP8.5; 4) a comparison of the effects of specifying atmospheric CO2 concentrations or CO2 emissions; and 5) the quantification of the relative importance of the two feedback mechanisms in terms of their cumulative contribution to the change in atmospheric CO2.Feedback results are broadly in agreement with earlier studies in that carbon?concentration feedback is negative for the atmosphere and carbon?climate feedback is positive. However, the magnitude and evolution of feedback behavior depends on the formalism employed, the scenario considered, and the specification of CO2 from emissions or as atmospheric concentrations. Both feedback parameters can differ by factors of two or more, depending on the scenario and on the specification of CO2 emissions or concentrations. While feedback results are qualitatively useful and illustrative of carbon budget behavior, they apply quantitatively to particular scenarios and cases.
    publisherAmerican Meteorological Society
    titleFeedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets
    typeJournal Paper
    journal volume26
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00365.1
    journal fristpage3326
    journal lastpage3341
    treeJournal of Climate:;2012:;volume( 026 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian