YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat

    Source: Journal of Climate:;2012:;volume( 026 ):;issue: 010::page 3285
    Author:
    Chan, Mark Aaron
    ,
    Comiso, Josefino C.
    DOI: 10.1175/JCLI-D-12-00204.1
    Publisher: American Meteorological Society
    Abstract: he Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud?Aerosol Lidar with Orthogonal Polarization (CALIOP), and CloudSat Cloud Profiling Radar (CPR) set of sensors, all in the Afternoon Constellation (A-Train), has been regarded as among the most powerful tools for characterizing the cloud cover. While providing good complementary information, the authors also observed that, at least for the Arctic region, the different sensors provide significantly different statistics about cloud cover characteristics. Data in 2007 and 2010 were analyzed, and the annual averages of cloud cover in the Arctic region were found to be 66.8%, 78.4%, and 63.3% as derived from MODIS, CALIOP, and CPR, respectively. A large disagreement between MODIS and CALIOP over sea ice and Greenland is observed, with a cloud percentage difference of 30.9% and 31.5%, respectively. In the entire Arctic, the average disagreement between MODIS and CALIOP increased from 13.1% during daytime to 26.7% during nighttime. Furthermore, the MODIS cloud mask accuracy has a high seasonal dependence, in that MODIS?CALIOP disagreement is the lowest during summertime at 10.7% and worst during winter at 28.0%. During nighttime the magnitude of the bias is higher because cloud detection is limited to the use of infrared bands. The clouds not detected by MODIS are typically low-level (top height <2 km) and high-level clouds (top height >6 km) and, especially, those that are geometrically thin (<2 km). Geometrically thin clouds (<2 km) accounted for about 95.5% of all clouds that CPR misses. As reported in a similar study, very low and thin clouds (<0.3 km) over sea ice that are detected by MODIS are sometimes not observed by CPR and misclassified by CALIOP.
    • Download: (6.871Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Arctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222254
    Collections
    • Journal of Climate

    Show full item record

    contributor authorChan, Mark Aaron
    contributor authorComiso, Josefino C.
    date accessioned2017-06-09T17:06:21Z
    date available2017-06-09T17:06:21Z
    date copyright2013/05/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79471.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222254
    description abstracthe Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud?Aerosol Lidar with Orthogonal Polarization (CALIOP), and CloudSat Cloud Profiling Radar (CPR) set of sensors, all in the Afternoon Constellation (A-Train), has been regarded as among the most powerful tools for characterizing the cloud cover. While providing good complementary information, the authors also observed that, at least for the Arctic region, the different sensors provide significantly different statistics about cloud cover characteristics. Data in 2007 and 2010 were analyzed, and the annual averages of cloud cover in the Arctic region were found to be 66.8%, 78.4%, and 63.3% as derived from MODIS, CALIOP, and CPR, respectively. A large disagreement between MODIS and CALIOP over sea ice and Greenland is observed, with a cloud percentage difference of 30.9% and 31.5%, respectively. In the entire Arctic, the average disagreement between MODIS and CALIOP increased from 13.1% during daytime to 26.7% during nighttime. Furthermore, the MODIS cloud mask accuracy has a high seasonal dependence, in that MODIS?CALIOP disagreement is the lowest during summertime at 10.7% and worst during winter at 28.0%. During nighttime the magnitude of the bias is higher because cloud detection is limited to the use of infrared bands. The clouds not detected by MODIS are typically low-level (top height <2 km) and high-level clouds (top height >6 km) and, especially, those that are geometrically thin (<2 km). Geometrically thin clouds (<2 km) accounted for about 95.5% of all clouds that CPR misses. As reported in a similar study, very low and thin clouds (<0.3 km) over sea ice that are detected by MODIS are sometimes not observed by CPR and misclassified by CALIOP.
    publisherAmerican Meteorological Society
    titleArctic Cloud Characteristics as Derived from MODIS, CALIPSO, and CloudSat
    typeJournal Paper
    journal volume26
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00204.1
    journal fristpage3285
    journal lastpage3306
    treeJournal of Climate:;2012:;volume( 026 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian