Meridional Energy Transport in the Coupled Atmosphere–Ocean System: Compensation and PartitioningSource: Journal of Climate:;2013:;volume( 026 ):;issue: 018::page 7151DOI: 10.1175/JCLI-D-12-00133.1Publisher: American Meteorological Society
Abstract: he variability and compensation of the meridional energy transport in the atmosphere and ocean are examined with the state-of-the-art GFDL Climate Model, version 2.1 (CM2.1), and the GFDL Intermediate Complexity Coupled Model (ICCM). On decadal time scales, a high degree of compensation between the energy transport in the atmosphere (AHT) and ocean (OHT) is found in the North Atlantic. The variability of the total or planetary heat transport (PHT) is much smaller than the variability in either AHT or OHT alone, a feature referred to as ?Bjerknes compensation.? Natural decadal variability stems from the Atlantic meridional overturning circulation (AMOC), which leads OHT variability. The PHT is positively correlated with the OHT, implying that the atmosphere is compensating, but imperfectly, for variations in ocean transport. Because of the fundamental role of the AMOC in generating the decadal OHT anomalies, Bjerknes compensation is expected to be active only in coupled models with a low-frequency AMOC spectral peak. The AHT and the transport in the oceanic gyres are positively correlated because the gyre transport responds to the atmospheric winds, thereby militating against long-term variability involving the wind-driven flow. Moisture and sensible heat transports in the atmosphere are also positively correlated at decadal time scales. The authors further explore the mechanisms and degree of compensation with a simple, diffusive, two-layer energy balance model. Taken together, these results suggest that compensation can be interpreted as arising from the highly efficient nature of the meridional energy transport in the atmosphere responding to ocean variability rather than any a priori need for the top-of-atmosphere radiation budget to be fixed.
|
Collections
Show full item record
contributor author | Farneti, Riccardo | |
contributor author | Vallis, Geoffrey K. | |
date accessioned | 2017-06-09T17:06:12Z | |
date available | 2017-06-09T17:06:12Z | |
date copyright | 2013/09/01 | |
date issued | 2013 | |
identifier issn | 0894-8755 | |
identifier other | ams-79430.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4222209 | |
description abstract | he variability and compensation of the meridional energy transport in the atmosphere and ocean are examined with the state-of-the-art GFDL Climate Model, version 2.1 (CM2.1), and the GFDL Intermediate Complexity Coupled Model (ICCM). On decadal time scales, a high degree of compensation between the energy transport in the atmosphere (AHT) and ocean (OHT) is found in the North Atlantic. The variability of the total or planetary heat transport (PHT) is much smaller than the variability in either AHT or OHT alone, a feature referred to as ?Bjerknes compensation.? Natural decadal variability stems from the Atlantic meridional overturning circulation (AMOC), which leads OHT variability. The PHT is positively correlated with the OHT, implying that the atmosphere is compensating, but imperfectly, for variations in ocean transport. Because of the fundamental role of the AMOC in generating the decadal OHT anomalies, Bjerknes compensation is expected to be active only in coupled models with a low-frequency AMOC spectral peak. The AHT and the transport in the oceanic gyres are positively correlated because the gyre transport responds to the atmospheric winds, thereby militating against long-term variability involving the wind-driven flow. Moisture and sensible heat transports in the atmosphere are also positively correlated at decadal time scales. The authors further explore the mechanisms and degree of compensation with a simple, diffusive, two-layer energy balance model. Taken together, these results suggest that compensation can be interpreted as arising from the highly efficient nature of the meridional energy transport in the atmosphere responding to ocean variability rather than any a priori need for the top-of-atmosphere radiation budget to be fixed. | |
publisher | American Meteorological Society | |
title | Meridional Energy Transport in the Coupled Atmosphere–Ocean System: Compensation and Partitioning | |
type | Journal Paper | |
journal volume | 26 | |
journal issue | 18 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-12-00133.1 | |
journal fristpage | 7151 | |
journal lastpage | 7166 | |
tree | Journal of Climate:;2013:;volume( 026 ):;issue: 018 | |
contenttype | Fulltext |