YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Diurnal Cycle of Summer Precipitation over Subtropical East Asia in CAM5

    Source: Journal of Climate:;2012:;volume( 026 ):;issue: 010::page 3159
    Author:
    Yuan, Weihua
    ,
    Yu, Rucong
    ,
    Zhang, Minghua
    ,
    Lin, Wuyin
    ,
    Li, Jian
    ,
    Fu, Yunfei
    DOI: 10.1175/JCLI-D-12-00119.1
    Publisher: American Meteorological Society
    Abstract: he simulations of summertime diurnal cycle of precipitation and low-level winds by the Community Atmosphere Model, version 5, are evaluated over subtropical East Asia. The evaluation reveals the physical cause of the observed diurnal rainfall variation in East Asia and points to the source of model strengths and weaknesses. Two model versions with horizontal resolutions of 2.8° and 0.5° are used.The models can reproduce the diurnal phase of large-scale winds over East Asia, with an enhanced low-level southwesterly in early morning. Correspondingly, models successfully simulated the diurnal variation of stratiform rainfall with a maximum in early morning. However, the simulated convective rainfall occurs at local noontime, earlier than observations and with larger amplitude (normalized by the daily mean). As a result, models simulated a weaker diurnal cycle in total rainfall over the western plain of China due to an out-of-phase cancellation between convective and stratiform rainfalls and a noontime maximum of total rainfall over the eastern plain of China. Over the East China Sea, models simulated the early-morning maximum of convective precipitation and, together with the correct phase of the stratiform rainfall, they captured the diurnal cycle of total precipitation. The superposition of the stratiform and convective rainfalls also explains the observed diurnal cycle in total rainfall in East Asia. Relative to the coarse-resolution model, the high-resolution model simulated slight improvement in diurnal rainfall amplitudes, due to the larger amplitude of stratiform rainfall. The two models, however, suffer from the same major biases in rainfall diurnal cycles due to the convection parameterization.
    • Download: (2.656Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Diurnal Cycle of Summer Precipitation over Subtropical East Asia in CAM5

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222196
    Collections
    • Journal of Climate

    Show full item record

    contributor authorYuan, Weihua
    contributor authorYu, Rucong
    contributor authorZhang, Minghua
    contributor authorLin, Wuyin
    contributor authorLi, Jian
    contributor authorFu, Yunfei
    date accessioned2017-06-09T17:06:09Z
    date available2017-06-09T17:06:09Z
    date copyright2013/05/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79418.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222196
    description abstracthe simulations of summertime diurnal cycle of precipitation and low-level winds by the Community Atmosphere Model, version 5, are evaluated over subtropical East Asia. The evaluation reveals the physical cause of the observed diurnal rainfall variation in East Asia and points to the source of model strengths and weaknesses. Two model versions with horizontal resolutions of 2.8° and 0.5° are used.The models can reproduce the diurnal phase of large-scale winds over East Asia, with an enhanced low-level southwesterly in early morning. Correspondingly, models successfully simulated the diurnal variation of stratiform rainfall with a maximum in early morning. However, the simulated convective rainfall occurs at local noontime, earlier than observations and with larger amplitude (normalized by the daily mean). As a result, models simulated a weaker diurnal cycle in total rainfall over the western plain of China due to an out-of-phase cancellation between convective and stratiform rainfalls and a noontime maximum of total rainfall over the eastern plain of China. Over the East China Sea, models simulated the early-morning maximum of convective precipitation and, together with the correct phase of the stratiform rainfall, they captured the diurnal cycle of total precipitation. The superposition of the stratiform and convective rainfalls also explains the observed diurnal cycle in total rainfall in East Asia. Relative to the coarse-resolution model, the high-resolution model simulated slight improvement in diurnal rainfall amplitudes, due to the larger amplitude of stratiform rainfall. The two models, however, suffer from the same major biases in rainfall diurnal cycles due to the convection parameterization.
    publisherAmerican Meteorological Society
    titleDiurnal Cycle of Summer Precipitation over Subtropical East Asia in CAM5
    typeJournal Paper
    journal volume26
    journal issue10
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-12-00119.1
    journal fristpage3159
    journal lastpage3172
    treeJournal of Climate:;2012:;volume( 026 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian