YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ocean Heat Transport and Its Projected Change in CanESM2

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 023::page 8148
    Author:
    Yang, Duo
    ,
    Saenko, Oleg A.
    DOI: 10.1175/JCLI-D-11-00715.1
    Publisher: American Meteorological Society
    Abstract: he meridional ocean heat transport (MOHT), its seasonal variability, and projected changes simulated by the second generation Canadian Earth System Model (CanESM2) are presented. The global mean MOHT is within the uncertainty of the observational estimates. However, a correct simulation of the MOHT for individual ocean basins is more challenging, and the Atlantic MOHT south of 30°N is underestimated. The partitioning of the MOHT into the overturning and gyre components is generally consistent with such partitioning in an observationally optimized ocean model. At low latitudes, the time-mean MOHT is dominated by its overturning component, whereas in the Southern Ocean and, especially, in the subpolar North Atlantic, it is the gyre component that plays a more important role. In the projected warmer climates, CanESM2 simulates a weakening of the poleward MOHT essentially in both hemispheres. The projected MOHT changes are largely determined by the overturning component, except in the subpolar Atlantic where it is dominated by the gyre component. Consistent with (the limited number of) previous studies, the seasonal variability of the MOHT is large and is mostly driven by the seasonal variability of the meridional Ekman transport. In the simulated warmer climates, the seasonal cycle of the MOHT is projected to change, mostly in the tropics and also in the Southern Hemisphere midlatitudes. The eddy contribution to the MOHT is broadly consistent with that in the observationally optimized eddy-permitting model. However, in the tropics a significant fraction of the eddy energy is converted back to the mean circulation, and the heat transports due to the parameterized and permitted eddies differ.
    • Download: (2.280Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ocean Heat Transport and Its Projected Change in CanESM2

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222086
    Collections
    • Journal of Climate

    Show full item record

    contributor authorYang, Duo
    contributor authorSaenko, Oleg A.
    date accessioned2017-06-09T17:05:47Z
    date available2017-06-09T17:05:47Z
    date copyright2012/12/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79319.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222086
    description abstracthe meridional ocean heat transport (MOHT), its seasonal variability, and projected changes simulated by the second generation Canadian Earth System Model (CanESM2) are presented. The global mean MOHT is within the uncertainty of the observational estimates. However, a correct simulation of the MOHT for individual ocean basins is more challenging, and the Atlantic MOHT south of 30°N is underestimated. The partitioning of the MOHT into the overturning and gyre components is generally consistent with such partitioning in an observationally optimized ocean model. At low latitudes, the time-mean MOHT is dominated by its overturning component, whereas in the Southern Ocean and, especially, in the subpolar North Atlantic, it is the gyre component that plays a more important role. In the projected warmer climates, CanESM2 simulates a weakening of the poleward MOHT essentially in both hemispheres. The projected MOHT changes are largely determined by the overturning component, except in the subpolar Atlantic where it is dominated by the gyre component. Consistent with (the limited number of) previous studies, the seasonal variability of the MOHT is large and is mostly driven by the seasonal variability of the meridional Ekman transport. In the simulated warmer climates, the seasonal cycle of the MOHT is projected to change, mostly in the tropics and also in the Southern Hemisphere midlatitudes. The eddy contribution to the MOHT is broadly consistent with that in the observationally optimized eddy-permitting model. However, in the tropics a significant fraction of the eddy energy is converted back to the mean circulation, and the heat transports due to the parameterized and permitted eddies differ.
    publisherAmerican Meteorological Society
    titleOcean Heat Transport and Its Projected Change in CanESM2
    typeJournal Paper
    journal volume25
    journal issue23
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00715.1
    journal fristpage8148
    journal lastpage8163
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian