YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Surface Energy Balance Framework for Arctic Amplification of Climate Change

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 023::page 8277
    Author:
    Lesins, Glen
    ,
    Duck, Thomas J.
    ,
    Drummond, James R.
    DOI: 10.1175/JCLI-D-11-00711.1
    Publisher: American Meteorological Society
    Abstract: sing 22 Canadian radiosonde stations from 1971 to 2010, the annually averaged surface air temperature trend amplification ranged from 1.4 to 5.2 relative to the global average warming of 0.17°C decade?1. The amplification factors exhibit a strong latitudinal dependence varying from 2.6 to 5.2 as the latitude increases from 50° to 80°N. The warming trend has a strong seasonal dependence with the greatest warming taking place from September to April. The monthly variations in the warming trend are shown to be related to the surface-based temperature inversion strength and the mean monthly surface air temperatures.The surface energy balance (SEB) equation is used to relate the response of the surface temperature to changes in the surface energy fluxes. Based on the SEB analysis, there are four contributing factors to Arctic amplification: 1) a larger change in net downward radiation at the Arctic surface compared to the global average; 2) a larger snow and soil conductive heat flux change than the global average; 3) weaker sensible and latent heat flux responses that result in a larger surface temperature response in the Arctic; and 4) a colder skin temperature compared to the global average, which forces a larger surface warming to achieve the same increase in upward longwave radiation. The observed relationships between the Canadian station warming trends and both the surface-based inversion strength and the surface air temperature are shown to be consistent with the SEB analysis. Measurements of conductive flux were not available at these stations.
    • Download: (1.560Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Surface Energy Balance Framework for Arctic Amplification of Climate Change

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222082
    Collections
    • Journal of Climate

    Show full item record

    contributor authorLesins, Glen
    contributor authorDuck, Thomas J.
    contributor authorDrummond, James R.
    date accessioned2017-06-09T17:05:46Z
    date available2017-06-09T17:05:46Z
    date copyright2012/12/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79315.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222082
    description abstractsing 22 Canadian radiosonde stations from 1971 to 2010, the annually averaged surface air temperature trend amplification ranged from 1.4 to 5.2 relative to the global average warming of 0.17°C decade?1. The amplification factors exhibit a strong latitudinal dependence varying from 2.6 to 5.2 as the latitude increases from 50° to 80°N. The warming trend has a strong seasonal dependence with the greatest warming taking place from September to April. The monthly variations in the warming trend are shown to be related to the surface-based temperature inversion strength and the mean monthly surface air temperatures.The surface energy balance (SEB) equation is used to relate the response of the surface temperature to changes in the surface energy fluxes. Based on the SEB analysis, there are four contributing factors to Arctic amplification: 1) a larger change in net downward radiation at the Arctic surface compared to the global average; 2) a larger snow and soil conductive heat flux change than the global average; 3) weaker sensible and latent heat flux responses that result in a larger surface temperature response in the Arctic; and 4) a colder skin temperature compared to the global average, which forces a larger surface warming to achieve the same increase in upward longwave radiation. The observed relationships between the Canadian station warming trends and both the surface-based inversion strength and the surface air temperature are shown to be consistent with the SEB analysis. Measurements of conductive flux were not available at these stations.
    publisherAmerican Meteorological Society
    titleSurface Energy Balance Framework for Arctic Amplification of Climate Change
    typeJournal Paper
    journal volume25
    journal issue23
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00711.1
    journal fristpage8277
    journal lastpage8288
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian