YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Homogenization of the Global Radiosonde Temperature Dataset through Combined Comparison with Reanalysis Background Series and Neighboring Stations

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 023::page 8108
    Author:
    Haimberger, Leopold
    ,
    Tavolato, Christina
    ,
    Sperka, Stefan
    DOI: 10.1175/JCLI-D-11-00668.1
    Publisher: American Meteorological Society
    Abstract: his article describes progress in the homogenization of global radiosonde temperatures with updated versions of the Radiosonde Observation Correction Using Reanalyses (RAOBCORE) and Radiosonde Innovation Composite Homogenization (RICH) software packages. These are automated methods to homogenize the global radiosonde temperature dataset back to 1958. The break dates are determined from analysis of time series of differences between radiosonde temperatures (obs) and background forecasts (bg) of climate data assimilation systems used for the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and the ongoing interim ECMWF Re-Analysis (ERA-Interim).RAOBCORE uses the obs?bg time series also for estimating the break sizes. RICH determines the break sizes either by comparing the observations of a tested time series with observations of neighboring radiosonde time series (RICH-obs) or by comparing their background departures (RICH-τ). Consequently RAOBCORE results may be influenced by inhomogeneities in the bg, whereas break size estimation with RICH-obs is independent of the bg. The adjustment quality of RICH-obs, on the other hand, may suffer from large interpolation errors at remote stations. RICH-τ is a compromise that substantially reduces interpolation errors at the cost of slight dependence on the bg.Adjustment uncertainty is estimated by comparing the three methods and also by varying parameters in RICH. The adjusted radiosonde time series are compared with recent temperature datasets based on (Advanced) Microwave Sounding Unit [(A)MSU] radiances. The overall spatiotemporal consistency of the homogenized dataset has improved compared to earlier versions, particularly in the presatellite era. Vertical profiles of temperature trends are more consistent with satellite data as well.
    • Download: (3.704Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Homogenization of the Global Radiosonde Temperature Dataset through Combined Comparison with Reanalysis Background Series and Neighboring Stations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4222045
    Collections
    • Journal of Climate

    Show full item record

    contributor authorHaimberger, Leopold
    contributor authorTavolato, Christina
    contributor authorSperka, Stefan
    date accessioned2017-06-09T17:05:39Z
    date available2017-06-09T17:05:39Z
    date copyright2012/12/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79282.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4222045
    description abstracthis article describes progress in the homogenization of global radiosonde temperatures with updated versions of the Radiosonde Observation Correction Using Reanalyses (RAOBCORE) and Radiosonde Innovation Composite Homogenization (RICH) software packages. These are automated methods to homogenize the global radiosonde temperature dataset back to 1958. The break dates are determined from analysis of time series of differences between radiosonde temperatures (obs) and background forecasts (bg) of climate data assimilation systems used for the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) and the ongoing interim ECMWF Re-Analysis (ERA-Interim).RAOBCORE uses the obs?bg time series also for estimating the break sizes. RICH determines the break sizes either by comparing the observations of a tested time series with observations of neighboring radiosonde time series (RICH-obs) or by comparing their background departures (RICH-τ). Consequently RAOBCORE results may be influenced by inhomogeneities in the bg, whereas break size estimation with RICH-obs is independent of the bg. The adjustment quality of RICH-obs, on the other hand, may suffer from large interpolation errors at remote stations. RICH-τ is a compromise that substantially reduces interpolation errors at the cost of slight dependence on the bg.Adjustment uncertainty is estimated by comparing the three methods and also by varying parameters in RICH. The adjusted radiosonde time series are compared with recent temperature datasets based on (Advanced) Microwave Sounding Unit [(A)MSU] radiances. The overall spatiotemporal consistency of the homogenized dataset has improved compared to earlier versions, particularly in the presatellite era. Vertical profiles of temperature trends are more consistent with satellite data as well.
    publisherAmerican Meteorological Society
    titleHomogenization of the Global Radiosonde Temperature Dataset through Combined Comparison with Reanalysis Background Series and Neighboring Stations
    typeJournal Paper
    journal volume25
    journal issue23
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00668.1
    journal fristpage8108
    journal lastpage8131
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 023
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian