The Effect of a Well-Resolved Stratosphere on Surface Climate: Differences between CMIP5 Simulations with High and Low Top Versions of the Met Office Climate ModelSource: Journal of Climate:;2012:;volume( 025 ):;issue: 020::page 7083DOI: 10.1175/JCLI-D-11-00579.1Publisher: American Meteorological Society
Abstract: he importance of using a general circulation model that includes a well-resolved stratosphere for climate simulations, and particularly the influence this has on surface climate, is investigated. High top model simulations are run with the Met Office Unified Model for the Coupled Model Intercomparison Project Phase 5 (CMIP5). These simulations are compared to equivalent simulations run using a low top model differing only in vertical extent and vertical resolution above 15 km. The period 1960?2002 is analyzed and compared to observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Long-term climatology, variability, and trends in surface temperature and sea ice, along with the variability of the annular mode index, are found to be insensitive to the addition of a well-resolved stratosphere. The inclusion of a well-resolved stratosphere, however, does improve the impact of atmospheric teleconnections on surface climate, in particular the response to El Niño?Southern Oscillation, the quasi-biennial oscillation, and midwinter stratospheric sudden warmings (i.e., zonal mean wind reversals in the middle stratosphere). Thus, including a well-represented stratosphere could improve climate simulation on intraseasonal to interannual time scales.
|
Collections
Show full item record
contributor author | Hardiman, S. C. | |
contributor author | Butchart, N. | |
contributor author | Hinton, T. J. | |
contributor author | Osprey, S. M. | |
contributor author | Gray, L. J. | |
date accessioned | 2017-06-09T17:05:27Z | |
date available | 2017-06-09T17:05:27Z | |
date copyright | 2012/10/01 | |
date issued | 2012 | |
identifier issn | 0894-8755 | |
identifier other | ams-79222.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4221979 | |
description abstract | he importance of using a general circulation model that includes a well-resolved stratosphere for climate simulations, and particularly the influence this has on surface climate, is investigated. High top model simulations are run with the Met Office Unified Model for the Coupled Model Intercomparison Project Phase 5 (CMIP5). These simulations are compared to equivalent simulations run using a low top model differing only in vertical extent and vertical resolution above 15 km. The period 1960?2002 is analyzed and compared to observations and the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis dataset. Long-term climatology, variability, and trends in surface temperature and sea ice, along with the variability of the annular mode index, are found to be insensitive to the addition of a well-resolved stratosphere. The inclusion of a well-resolved stratosphere, however, does improve the impact of atmospheric teleconnections on surface climate, in particular the response to El Niño?Southern Oscillation, the quasi-biennial oscillation, and midwinter stratospheric sudden warmings (i.e., zonal mean wind reversals in the middle stratosphere). Thus, including a well-represented stratosphere could improve climate simulation on intraseasonal to interannual time scales. | |
publisher | American Meteorological Society | |
title | The Effect of a Well-Resolved Stratosphere on Surface Climate: Differences between CMIP5 Simulations with High and Low Top Versions of the Met Office Climate Model | |
type | Journal Paper | |
journal volume | 25 | |
journal issue | 20 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-11-00579.1 | |
journal fristpage | 7083 | |
journal lastpage | 7099 | |
tree | Journal of Climate:;2012:;volume( 025 ):;issue: 020 | |
contenttype | Fulltext |