Mechanisms behind the Temporary Shutdown of Deep Convection in the Labrador Sea: Lessons from the Great Salinity Anomaly Years 1968–71Source: Journal of Climate:;2012:;volume( 025 ):;issue: 019::page 6743DOI: 10.1175/JCLI-D-11-00549.1Publisher: American Meteorological Society
Abstract: rom 1969 to 1971 convection in the Labrador Sea shut down, thus interrupting the formation of the intermediate/dense water masses. The shutdown has been attributed to the surface freshening induced by the Great Salinity Anomaly (GSA), a freshwater anomaly in the subpolar North Atlantic. The abrupt resumption of convection in 1972, in contrast, is attributed to the extreme atmospheric forcing of that winter. Here oceanic and atmospheric data collected in the Labrador Sea at Ocean Weather Station Bravo and a one-dimensional mixed layer model are used to examine the causes of the shutdown and resumption of convection in detail. These results highlight the tight coupling of the ocean and atmosphere in convection regions and the need to resolve both components to correctly represent convective processes in the ocean. They are also relevant to present-day conditions given the increased ice melt in the Arctic Ocean and from the Greenland Ice Sheet. The analysis herein shows that the shutdown was initiated by the GSA-induced freshening as well as the mild 1968/69 winter. After the shutdown had begun, however, the continuing lateral freshwater flux as well as two positive feedbacks [both associated with the sea surface temperature (SST) decrease due to lack of convective mixing with warmer subsurface water] further inhibited convection. First, the SST decrease reduced the heat flux to the atmosphere by reducing the air?sea temperature gradient. Second, it further reduced the surface buoyancy loss by reducing the thermal expansion coefficient of the surface water. In 1972 convection resumed because of both the extreme atmospheric forcing and advection of saltier waters into the convection region.
|
Collections
Show full item record
contributor author | Gelderloos, Renske | |
contributor author | Straneo, Fiammetta | |
contributor author | Katsman, Caroline A. | |
date accessioned | 2017-06-09T17:05:19Z | |
date available | 2017-06-09T17:05:19Z | |
date copyright | 2012/10/01 | |
date issued | 2012 | |
identifier issn | 0894-8755 | |
identifier other | ams-79198.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4221951 | |
description abstract | rom 1969 to 1971 convection in the Labrador Sea shut down, thus interrupting the formation of the intermediate/dense water masses. The shutdown has been attributed to the surface freshening induced by the Great Salinity Anomaly (GSA), a freshwater anomaly in the subpolar North Atlantic. The abrupt resumption of convection in 1972, in contrast, is attributed to the extreme atmospheric forcing of that winter. Here oceanic and atmospheric data collected in the Labrador Sea at Ocean Weather Station Bravo and a one-dimensional mixed layer model are used to examine the causes of the shutdown and resumption of convection in detail. These results highlight the tight coupling of the ocean and atmosphere in convection regions and the need to resolve both components to correctly represent convective processes in the ocean. They are also relevant to present-day conditions given the increased ice melt in the Arctic Ocean and from the Greenland Ice Sheet. The analysis herein shows that the shutdown was initiated by the GSA-induced freshening as well as the mild 1968/69 winter. After the shutdown had begun, however, the continuing lateral freshwater flux as well as two positive feedbacks [both associated with the sea surface temperature (SST) decrease due to lack of convective mixing with warmer subsurface water] further inhibited convection. First, the SST decrease reduced the heat flux to the atmosphere by reducing the air?sea temperature gradient. Second, it further reduced the surface buoyancy loss by reducing the thermal expansion coefficient of the surface water. In 1972 convection resumed because of both the extreme atmospheric forcing and advection of saltier waters into the convection region. | |
publisher | American Meteorological Society | |
title | Mechanisms behind the Temporary Shutdown of Deep Convection in the Labrador Sea: Lessons from the Great Salinity Anomaly Years 1968–71 | |
type | Journal Paper | |
journal volume | 25 | |
journal issue | 19 | |
journal title | Journal of Climate | |
identifier doi | 10.1175/JCLI-D-11-00549.1 | |
journal fristpage | 6743 | |
journal lastpage | 6755 | |
tree | Journal of Climate:;2012:;volume( 025 ):;issue: 019 | |
contenttype | Fulltext |