YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Climate
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanisms behind the Temporary Shutdown of Deep Convection in the Labrador Sea: Lessons from the Great Salinity Anomaly Years 1968–71

    Source: Journal of Climate:;2012:;volume( 025 ):;issue: 019::page 6743
    Author:
    Gelderloos, Renske
    ,
    Straneo, Fiammetta
    ,
    Katsman, Caroline A.
    DOI: 10.1175/JCLI-D-11-00549.1
    Publisher: American Meteorological Society
    Abstract: rom 1969 to 1971 convection in the Labrador Sea shut down, thus interrupting the formation of the intermediate/dense water masses. The shutdown has been attributed to the surface freshening induced by the Great Salinity Anomaly (GSA), a freshwater anomaly in the subpolar North Atlantic. The abrupt resumption of convection in 1972, in contrast, is attributed to the extreme atmospheric forcing of that winter. Here oceanic and atmospheric data collected in the Labrador Sea at Ocean Weather Station Bravo and a one-dimensional mixed layer model are used to examine the causes of the shutdown and resumption of convection in detail. These results highlight the tight coupling of the ocean and atmosphere in convection regions and the need to resolve both components to correctly represent convective processes in the ocean. They are also relevant to present-day conditions given the increased ice melt in the Arctic Ocean and from the Greenland Ice Sheet. The analysis herein shows that the shutdown was initiated by the GSA-induced freshening as well as the mild 1968/69 winter. After the shutdown had begun, however, the continuing lateral freshwater flux as well as two positive feedbacks [both associated with the sea surface temperature (SST) decrease due to lack of convective mixing with warmer subsurface water] further inhibited convection. First, the SST decrease reduced the heat flux to the atmosphere by reducing the air?sea temperature gradient. Second, it further reduced the surface buoyancy loss by reducing the thermal expansion coefficient of the surface water. In 1972 convection resumed because of both the extreme atmospheric forcing and advection of saltier waters into the convection region.
    • Download: (1.425Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanisms behind the Temporary Shutdown of Deep Convection in the Labrador Sea: Lessons from the Great Salinity Anomaly Years 1968–71

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4221951
    Collections
    • Journal of Climate

    Show full item record

    contributor authorGelderloos, Renske
    contributor authorStraneo, Fiammetta
    contributor authorKatsman, Caroline A.
    date accessioned2017-06-09T17:05:19Z
    date available2017-06-09T17:05:19Z
    date copyright2012/10/01
    date issued2012
    identifier issn0894-8755
    identifier otherams-79198.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4221951
    description abstractrom 1969 to 1971 convection in the Labrador Sea shut down, thus interrupting the formation of the intermediate/dense water masses. The shutdown has been attributed to the surface freshening induced by the Great Salinity Anomaly (GSA), a freshwater anomaly in the subpolar North Atlantic. The abrupt resumption of convection in 1972, in contrast, is attributed to the extreme atmospheric forcing of that winter. Here oceanic and atmospheric data collected in the Labrador Sea at Ocean Weather Station Bravo and a one-dimensional mixed layer model are used to examine the causes of the shutdown and resumption of convection in detail. These results highlight the tight coupling of the ocean and atmosphere in convection regions and the need to resolve both components to correctly represent convective processes in the ocean. They are also relevant to present-day conditions given the increased ice melt in the Arctic Ocean and from the Greenland Ice Sheet. The analysis herein shows that the shutdown was initiated by the GSA-induced freshening as well as the mild 1968/69 winter. After the shutdown had begun, however, the continuing lateral freshwater flux as well as two positive feedbacks [both associated with the sea surface temperature (SST) decrease due to lack of convective mixing with warmer subsurface water] further inhibited convection. First, the SST decrease reduced the heat flux to the atmosphere by reducing the air?sea temperature gradient. Second, it further reduced the surface buoyancy loss by reducing the thermal expansion coefficient of the surface water. In 1972 convection resumed because of both the extreme atmospheric forcing and advection of saltier waters into the convection region.
    publisherAmerican Meteorological Society
    titleMechanisms behind the Temporary Shutdown of Deep Convection in the Labrador Sea: Lessons from the Great Salinity Anomaly Years 1968–71
    typeJournal Paper
    journal volume25
    journal issue19
    journal titleJournal of Climate
    identifier doi10.1175/JCLI-D-11-00549.1
    journal fristpage6743
    journal lastpage6755
    treeJournal of Climate:;2012:;volume( 025 ):;issue: 019
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian